慣性センサデータを用いたディープラーニングによる空手動作識別手法の開発

Saved in:
Bibliographic Details
Published in日本機械学会論文集 Vol. 87; no. 903; p. 21-00214
Main Authors 相原, 伸平, 石部, 開, 佐武, 陸史, 岩田, 浩康
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本機械学会 2021
Subjects
Online AccessGet full text

Cover

Loading…
Author 佐武, 陸史
岩田, 浩康
相原, 伸平
石部, 開
Author_xml – sequence: 1
  fullname: 相原, 伸平
  organization: 国立スポーツ科学センター
– sequence: 2
  fullname: 石部, 開
  organization: 早稲田大学 創造理工学研究科
– sequence: 3
  fullname: 佐武, 陸史
  organization: 早稲田大学 創造理工学研究科
– sequence: 4
  fullname: 岩田, 浩康
  organization: 早稲田大学 理工学術院
BookMark eNo9kM1Kw0AAhBdRsNa-gO-Quj9JdvcoxV8KXvQcNslWE9oqSS_eTKLYkptYf0DwUESLKELxUhUfZm2qb6Gt0tPMfAxzmDkwXd-rSwAWECwizPliIxD10A9rsoiRBiFG-hTIYcSoxqmJZkEhDD0bEhMbjFAjB7zsuJMd3qn4VSU9Fb-o5EQlbyr-UPHp8OxeRUcquhnBuDPiyYVKumOTjvvPKnpQcVPF6bDbz1rpIG1_vl9_PV4Omre_Meu1VfT0fZ4Or_rzYKYiqqEs_GsebK8sb5XWtPLm6nppqaz5iEOhSaJXbIm5wahrM2EiE0kkkGM6lBuGY1MdEUZtKHjFQYaOoEMN2yaYuS5jELokDzb-dv2wIXaktR94NREcWCJoeE5VWpOHLEYtDslIMLLGX01Kzq4ILF-QH4a-jSI
ContentType Journal Article
Copyright 2021 一般社団法人日本機械学会
Copyright_xml – notice: 2021 一般社団法人日本機械学会
DOI 10.1299/transjsme.21-00214
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2187-9761
EndPage 21-00214
ExternalDocumentID article_transjsme_87_903_87_21_00214_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
ID FETCH-LOGICAL-j190a-e34fbe29587db8a6161e1a1c6c7955cb741387b0a9fc15410c75bb328dd8800d3
IngestDate Sun Jul 28 05:07:31 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 903
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j190a-e34fbe29587db8a6161e1a1c6c7955cb741387b0a9fc15410c75bb328dd8800d3
OpenAccessLink http://dx.doi.org/10.1299/transjsme.21-00214
ParticipantIDs jstage_primary_article_transjsme_87_903_87_21_00214_article_char_ja
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle 日本機械学会論文集
PublicationYear 2021
Publisher 一般社団法人 日本機械学会
Publisher_xml – name: 一般社団法人 日本機械学会
References Hafer, J. F. and Boyer, K. A., Variability of segment coordination using a vector coding technique: Reliability analysis for treadmill walking and running, Gait and Posture, Vol.51 (2017), pp.222–227.
Groh, B. H., Flaschka, J., Wirth, M., Kautz, T., Fleckenstein, M. and Eskofier, B. M., Wearable real-time skateboard trick visualization and its community perception, IEEE Computer Graphics and Applications, No.36, Vol.5 (2016), pp.12–18.
Edelmann-Nusser, A., Raschke, A., Bentz, A., Montenbruck, S., Edelmann-Nusser, J. and Lames, M., Validation of sensor-based game analysis tools in tennis, International Journal of Computer Science in Sport, Vol.18, No.2 (2019), pp.49–59.
Srivastava, N., Hinton, G., Krizhevsky, A. and Salakhutdinov, R., Dropout: A simple way to prevent neural networks from overfitting, Journal of Machine Learning Research, Vol.15, No.56 (2014), pp.1929–1958.
Wang, L. K. and Liu, R. Y., Human activity recognition based on wearable sensor using hierarchical deep LSTM networks, Circuits, Systems, and Signal Processing, Vol.39, No.2 (2020), pp.837–856.
Kearns, M. and Ron, D., Algorithmic stability and sanity-check bounds for leave-one-out cross-validation, Neural Computation, Vol.11, No.6 (1999), pp.1427–1453.
Ronao, C. A. and Cho, S. B., Human activity recognition with smartphone sensors using deep learning neural networks, Expert Systems with Applications, Vol.59 (2016), pp.235–244.
Wundersitz, D. W. T., Gastin, P. B., Richter, C., Robertson, S. J. and Netto, K. J., Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running, European Journal of Sport Science, Vol.15, No.5 (2015a), pp.382–390.
Lim, S. M., Oh, H. C., Kim, J., Lee, J. and Park, J., LSTM-guided coaching assistant for table tennis practice, Sensors, Vol.18, No.12 (2018), 4112.
Hossain, H. M. S., Khan, M. A. A. H. and Roy, N., SoccerMate: A personal soccer attribute profiler using wearables, In IEEE International Conference on Pervasive Computing and Communications Workshops (2017), pp.164-169.
Jens, B., Magni, M., Allan, P., Jorge, P. G. and Peter, K., Training and testing the elite athlete, Journal of Exercise Science and Fitness, Vol.4 No.1 (2006), pp.1–14.
Preece, S. J., Goulermas, J. Y., Kenney, L. P. J. and Howard, D., A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data, IEEE Transactions on Biomedical Engineering, Vol.56, No.3 (2009), pp.871–879.
Vales-Alonso, J., Chaves-Dieguez, D., Lopez-Matencio, P., Alcaraz, J. J., Parrado-Garcia, F. J. and Gonzalez-Castano, F. J., SAETA: A smart coaching assistant for professional volleyball training. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Vol.45, No.8 (2015), pp.1138–1150.
Lückemann, P., Haid, D. M., Brömel, P., Schwanitz, S. and Maiwald, C., Validation of an inertial sensor system for swing analysis in golf, Multidisciplinary Digital Publishing Institute Proceedings, Vol.2, No.6 (2018), pp.246-252.
Prayudi, I. and Kim, D., Design and implementation of IMU-based human arm motion capture system, In IEEE International Conference on Mechatronics and Automation (2012), pp.670–675.
Yang, J., Nguyen, M. N., San, P. P., Li, X. and Krishnaswamy, S., Deep convolutional neural networks on multichannel time series for human activity recognition, In International Conference on Artificial Intelligence (2015), pp.3995–4001.
Morris, D., Saponas, T. S., Guillory, A. and Kelner, I., RecoFit: Using a wearable sensor to find, recognize, and count repetitive exercises, In Conference on Human Factors in Computing Systems (2014), pp.3225–3234.
Bao, L. and Intille, S. S., Activity recognition from user-annotated acceleration data, In International conference on pervasive computing, Vol.3001 (2004), pp.1–17.
Bux, A., Angelov, P. and Habib, Z., Vision based human activity recognition: A review, In Advances in Intelligent Systems and Computing, Vol. 513 (2017), pp. 341–371.
Marcard, T. von, Rosenhahn, B., Black, M. J. and Pons-Moll, G., Sparse inertial poser: automatic 3D human pose estimation from sparse IMUs, Computer Graphics Forum, Vol.36, No.2 (2017), pp.349–360.
Ravi, D., Wong, C., Lo, B. and Yang, G. Z., A deep learning approach to on-node sensor data analytics for mobile or wearable devices, IEEE Journal of Biomedical and Health Informatics, Vol.21, No.1 (2017), pp.56–64.
Wagner, D., Kalischewski, K., Velten, J. and Kummert, A., Activity recognition using inertial sensors and a 2-D convolutional neural network, In International Workshop on Multidimensional Systems (2017), pp.1–6.
Zebin, T., Scully, P. J. and Ozanyan, K. B., Human activity recognition with inertial sensors using a deep learning approach, In Proceedings of IEEE Sensors (2017), pp.1–3.
Lecun, Y., Bengio, Y. and Hinton, G., Deep learning, Nature, Vol.521, No.7553 (2015), pp.436–444.
Giblin, G., Tor, E. and Parrington, L., The impact of technology on elite sports performance, Sensoria A Journal of Mind Brain and Culture, Vol.12, No.2 (2016), pp.3–12.
Bengio, Y., Deep learning of representations: Looking forward, In International Conference on Statistical Language and Speech Processing, Vol.7978 (2013), pp.1–37.
Connaghan, D., Kelly, P., O’Connor, N. E., Gaffney, M., Walsh, M. and O’Mathuna, C., Multi-sensor classification of tennis strokes, In Proceedings of IEEE Sensors (2011), pp. 1437–1440.
Mannini, A. and Sabatini, A. M., Machine learning methods for classifying human physical activity from on-body accelerometers, Sensors, Vol.10, No.2 (2010), pp.1154–1175.
Schuldhaus, D., Zwick, C., Körger, H., Dorschky, E., Kirk, R. and Eskofier, B. M., Inertial sensor-based approach for shot/pass classification during a soccer match, In KDD workshop on large-scale sports analytics (2015), pp. 1–4.
Hochreiter, S. and Schmidhuber, J., Long short-term memory, Neural Computation, Vol.9, No.8 (1997), pp.1735–1780.
Mitchell, E., Monaghan, D. and O’Connor, N. E., Classification of sporting activities using smartphone accelerometers, Sensors, Vol.13, No.4 (2013), pp.5317–5337.
Oetken, G., Parks, T. W. and SchÜSsler, H. W., New results in the design of digital interpolators. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.23, No.3 (1975), pp.301–309.
Thomas, O., Sunehag, P., Dror, G., Yun, S., Kim, S., Robards, M., Smola, A., Green, D. and Saunders, P., Wearable sensor activity analysis using semi-Markov models with a grammar, Pervasive and Mobile Computing, Vol.6, No.3 (2010), pp.342–350.
Wundersitz, D. W. T., Josman, C., Gupta, R., Netto, K. J., Gastin, P. B. and Robertson, S., Classification of team sport activities using a single wearable tracking device, Journal of Biomechanics, Vol.48, No.15 (2015b), pp.3975–3981.
Groh, B. H., Fleckenstein, M., Kautz, T. and Eskofier, B. M., Classification and visualization of skateboard tricks using wearable sensors, Pervasive and Mobile Computing, Vol.40 (2017), pp.42–55.
Rana, M. and Mittal, V., Wearable sensors for real-time kinematics analysis in sports: a review, IEEE Sensors Journal, Vol.21, No.2 (2021), pp.1187–1207.
Coren, S., The lateral preference inventory for measurement of handedness, footedness, eyedness, and earedness: Norms for young adults, Bulletin of the Psychonomic Society, Vol.31, No.1 (1993), pp.1–3.
Sze, V., Chen, Y. H., Yang, T. J. and Emer, J. S., Efficient processing of deep neural networks: A tutorial and survey, Proceedings of the IEEE, Vol.105, No.12 (2017), pp.2295–2329.
Young, C. and Reinkensmeyer, D. J., Judging complex movement performances for excellence: A principal components analysis-based technique applied to competitive diving, Human Movement Science, Vol.36 (2014), pp.107–122.
Sharma, M., Srivastava, R., Anand, A., Prakash, D. and Kaligounder, L., Wearable motion sensor based phasic analysis of tennis serve for performance feedback, In IEEE International Conference on Acoustics, Speech and Signal Processing (2017), pp.5945–5949.
Ahmadi, A., Mitchell, E., Richter, C., Destelle, F., Gowing, M., O’Connor, N. E. and Moran, K., Toward automatic activity classification and movement assessment during a sports training session, IEEE Internet of Things Journal, Vol.2, No.1 (2015), pp.23–32.
Myers, N., Kibler, W., Axtell, A. and Uhl, T., The Sony Smart Tennis Sensor accurately measures external workload in junior tennis players, International Journal of Sports Science & Coaching, Vol.14, No.1 (2018), pp.24–31.
Dopico-Calvo, X., Iglesias-Soler, E., Morenilla, L., Giráldez, M. A., Santos, L. and Ardá, A., Laterality and performance in combat sports, Archives of Budo, Vol.12 (2016), pp.167–177.
References_xml
SSID ssib036258375
ssib016970096
ssib051641555
ssj0002911760
ssib016970100
Score 2.2655666
SourceID jstage
SourceType Publisher
StartPage 21-00214
SubjectTerms Deep learning
Identification
Inertial sensor
Karate
Long Short Term Memory
Title 慣性センサデータを用いたディープラーニングによる空手動作識別手法の開発
URI https://www.jstage.jst.go.jp/article/transjsme/87/903/87_21-00214/_article/-char/ja
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本機械学会論文集, 2021, Vol.87(903), pp.21-00214-21-00214
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9RANJR60YP4iZ-lB-ckqZkkk8wckzVLEfTUQm8hyWbBRavo9uJB3KxiZW9i_QDBQxEtogjFS1X8MbFb_Re-95LsZq0HLV6yL2_evM9J5r0hM6tp52AO5yJ1Ut1ucaXbkeR6HFumrozYtEXLbQkbNydfvuLML9qXlsTS1PS12ldLK914Lrnzx30le4kq4CCuuEv2HyI7YgoIgCG-cIUIw_WvYswCh0nBPIsAg3kuCywmTeb7BFjMtyqMKDHSrZoaVVOzBJTJApcpm3mSMJxJuwRUc7K7SULrfCymKs6e-r1J7tbHKDl7fomRsgJ8VAOY-B7ZpQgj8KrACpv5F5kCzpJ5AEhqAljUiB0UpEQlImCBYsopOSvkXE_KkR6ULzgAZ6-BACiAVgNQaCtQnOeQAg2mPFLAR7bYyyHPQBefydFiJ0nzmV_oGCA_GNElhwLrgzLWBH2TnKTIkbKgL5UfkxU-MEg7UqoiU5Uw4GKO6UGOSWGh8II1RO_gqECsQFf7bn0FyByv_ZA4ieMLLEZPNyg-gAywKxhYDMDS5TYx887vzatFwkAzE6SFrg55LK9Po2XeVLwulGFNzIo6nc1Xy7LqqF2zOKRI8Oh1MVnr3L6ezk32nzgdvXz2whFxKN0QpOOPyUPqFlZEuJEx7EA1tc_EYyHxQ9-7QTX7cEe5WNBP3PPx4ZWQ6QlpjZNtwR1MxsVoRdeEvMF1jHJnHthwYbcFkOd2oOqrvhilJHbhkHawrD5nvULTw9pUJzqiHaidSXpUuzp8sD689ybPPuf9zTz7lPcf5v0vefYtzx7vPHmb9-7nvVeIzNYR33-W9zcIGBD9x7z3Ls9W82yws7E1fDTYHqx9__ryx_vn26uv4Xa4uZb3Pvx8Oth5sXVMW2wGC415vfw_Fr0DZUOkp5bdjlNTCem2Yhk5UCymPOKJk7hKiCSG4sSSbmxEqp1AZcaNxBX44petFmQJRss6rk0v31hOT2izPE3tiBuukgmUFEkcqShut5NIpDaUFKZxUmsUfgpvFofuhHsJ9Kn_wuW0th-fumLd9Yw23b21kp6FSqQbz9AK3gwNo1-JFQAe
link.rule.ids 315,783,787,867,4033,27937,27938,27939
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%85%A3%E6%80%A7%E3%82%BB%E3%83%B3%E3%82%B5%E3%83%87%E3%83%BC%E3%82%BF%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E3%83%87%E3%82%A3%E3%83%BC%E3%83%97%E3%83%A9%E3%83%BC%E3%83%8B%E3%83%B3%E3%82%B0%E3%81%AB%E3%82%88%E3%82%8B%E7%A9%BA%E6%89%8B%E5%8B%95%E4%BD%9C%E8%AD%98%E5%88%A5%E6%89%8B%E6%B3%95%E3%81%AE%E9%96%8B%E7%99%BA&rft.jtitle=%E6%97%A5%E6%9C%AC%E6%A9%9F%E6%A2%B0%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E9%9B%86&rft.au=%E7%9B%B8%E5%8E%9F%2C+%E4%BC%B8%E5%B9%B3&rft.au=%E7%9F%B3%E9%83%A8%2C+%E9%96%8B&rft.au=%E4%BD%90%E6%AD%A6%2C+%E9%99%B8%E5%8F%B2&rft.au=%E5%B2%A9%E7%94%B0%2C+%E6%B5%A9%E5%BA%B7&rft.date=2021&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%A9%9F%E6%A2%B0%E5%AD%A6%E4%BC%9A&rft.eissn=2187-9761&rft.volume=87&rft.issue=903&rft.spage=21-00214&rft.epage=21-00214&rft_id=info:doi/10.1299%2Ftransjsme.21-00214&rft.externalDocID=article_transjsme_87_903_87_21_00214_article_char_ja