Characteristics and Individual Differences in Tibial Rotation Range of Motion: A New Measuring Method in the Prone Position
[Purpose] This study examined the reliability of measuring the tibial rotation range of motion (ROM) using a spring-type clamping device and the characteristics and left-right differences with passive and active tibial rotation ROM. [Participants and Methods] Thirty healthy adults (15 females, mean...
Saved in:
Published in | Rigaku ryoho kagaku Vol. 37; no. 2; pp. 247 - 253 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
Tokyo
The Society of Physical Therapy Science
2022
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1341-1667 2434-2807 |
DOI | 10.1589/rika.37.247 |
Cover
Abstract | [Purpose] This study examined the reliability of measuring the tibial rotation range of motion (ROM) using a spring-type clamping device and the characteristics and left-right differences with passive and active tibial rotation ROM. [Participants and Methods] Thirty healthy adults (15 females, mean age 20.4 years) participated in this study. In the prone position with 90° knee flexion, the tibial rotation ROM was measured from photo images captured by two devices. [Results] The intra-rater reliability ICC (1,1) for external rotation was 0.96 and 0.93 for internal rotation. The comparison of passive and active rotation showed that internal rotation was not significantly different from active ROM. Differences of more than 5° between right and left ROM in internal or external rotation were observed in 87% of the participants. [Conclusion] Using this prone measurement method, large individual differences in tibial rotation ROM were observed. |
---|---|
AbstractList | [Purpose] This study examined the reliability of measuring the tibial rotation range of motion (ROM) using a spring-type clamping device and the characteristics and left-right differences with passive and active tibial rotation ROM. [Participants and Methods] Thirty healthy adults (15 females, mean age 20.4 years) participated in this study. In the prone position with 90° knee flexion, the tibial rotation ROM was measured from photo images captured by two devices. [Results] The intra-rater reliability ICC (1,1) for external rotation was 0.96 and 0.93 for internal rotation. The comparison of passive and active rotation showed that internal rotation was not significantly different from active ROM. Differences of more than 5° between right and left ROM in internal or external rotation were observed in 87% of the participants. [Conclusion] Using this prone measurement method, large individual differences in tibial rotation ROM were observed. |
Author | IHASHI, Kouji MINAMISAWA, Tadayoshi SUZUKI, Katsuhiko |
Author_xml | – sequence: 1 fullname: SUZUKI, Katsuhiko organization: Department of Physical Therapy, Yamagata Prefectural University of Health Sciences – sequence: 1 fullname: MINAMISAWA, Tadayoshi organization: Department of Physical Therapy, Yamagata Prefectural University of Health Sciences – sequence: 1 fullname: IHASHI, Kouji organization: Department of Physical Therapy, Faculty of Health Science, Nagano University of Health and Medicine |
BookMark | eNo9kFtPwjAUxxujiYg8-QWa-Dxc263dfDAheCMBJQSfl7PtDIrYYttpjF_eIcaXc_2dS_5n5NhYg4RcsHjI0iy_cvoVhkINeaKOSI8nIol4Fqtj0mMiYRGTUp2Sgfe6jJNEpbnKZI98j9fgoArotA-68hRMTSem1h-6bmFLb3XToENToafa0KUudVdd2ABBW0MXYFZIbUNndp9f0xF9wk86Q_Ct02bVRWFt6_1oWCOdu-5lOrde7-lzctLA1uPgz_fJy_3dcvwYTZ8fJuPRNNqwPFZRqViO2MRJiZDGEiBNWZ2j5LUExkFmJcRSqY5JmRRl1UDT8LJiLM9FnMlU9MnlYe_O2fcWfSg2tnWmO1lwmWaCCybyjro5UBsfYIXFzuk3cF8FuE6XLRZ7eQuhCv5rEvXfqDoFCzTiBwvDeUg |
ContentType | Journal Article |
Copyright | 2022 by the Society of Physical Therapy Science 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the Society of Physical Therapy Science – notice: 2022. This work is published under https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 7TS |
DOI | 10.1589/rika.37.247 |
DatabaseName | Physical Education Index |
DatabaseTitle | Physical Education Index |
DatabaseTitleList | Physical Education Index |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physical Therapy |
EISSN | 2434-2807 |
EndPage | 253 |
ExternalDocumentID | article_rika_37_2_37_247_article_char_en |
GroupedDBID | 123 29P 2WC 53G ABJNI ALMA_UNASSIGNED_HOLDINGS CS3 DIK DXH JSF KQ8 MOJWN OK1 OVT RJT RNS XSB 7TS |
ID | FETCH-LOGICAL-j1907-b719eef04bea506aa551d9e62d6a12a68ba06779ee5163bcfaff2bc1199308653 |
ISSN | 1341-1667 |
IngestDate | Sun Jun 29 12:35:10 EDT 2025 Wed Sep 03 06:30:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | Japanese |
License | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j1907-b719eef04bea506aa551d9e62d6a12a68ba06779ee5163bcfaff2bc1199308653 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/rika/37/2/37_247/_article/-char/en |
PQID | 2658323139 |
PQPubID | 2048443 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2658323139 jstage_primary_article_rika_37_2_37_247_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2022 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Rigaku ryoho kagaku |
PublicationTitleAlternate | Rigakuryoho Kagaku |
PublicationYear | 2022 |
Publisher | The Society of Physical Therapy Science Japan Science and Technology Agency |
Publisher_xml | – name: The Society of Physical Therapy Science – name: Japan Science and Technology Agency |
References | 9) 岩崎 翼,宮本 梓,鈴木美幸・他:下腿骨体軸回旋可動域計測方法の妥当性.理学療法群馬,2016, 27: 16-20. 14) Almquist PO, Ekdahl C, Isberg PE, et al.: Measurements of knee rotation-reliability of an external device in vivo. BMC Musculoskelet Disord, 2011, 12: 291. 21) 長嶺隆二,川崎 展,陳 維嘉・他:変形性膝関節症症例において,脛骨関節面の形状は左右で異なる.整形外科と災害外科,2020, 69: 173-176. 15) Almquist PO, Ekdahl C, Isberg PE, et al.: Knee rotation in healthy individuals related to age and gender. J Orthop Res, 2013, 31: 23-28. 6) Ore V, Nasic S, Riad J: Lower extremity range of motion and alignment: a reliability and concurrent validity study of goniometric and three-dimensional motion analysis measurement. Heliyon, 2020, 6: e04713. 16) Testa R, Chouteau J, Viste A, et al.: Reproducibility of an optical measurement system for the clinical evaluation of active knee rotation in weight-bearing, healthy subjects. Orthop Traumatol Surg Res, 2012, 98: 159-166. 18) Alam M, Bull AM, Thomas R, et al.: A clinical device for measuring internal-external rotational laxity of the knee. Am J Sports Med, 2013, 41: 87-94. 2) Nakagawa S, Kadoya Y, Todo S, et al.: Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br, 2000, 82: 1199-1200. 3) 長尾憲孝,立花敏弘,水野耕作:内側型変形性膝関節症の膝関節回旋運動の異常─超音波断層像を用いた立位荷重時における計測─.日本リウマチ・関節外科学会雑誌,1997, 16: 53-62. 5) 日本整形外科学会,日本リハビリテーション医学会:関節可動域表示ならびに測定法.日本整形外科学会雑誌,1995, 69: 240-250. 4) Bousquet G, Beguec PL, Girardin P:図解・膝の機能解剖と靭帯損傷.弓削大四郎,井原秀俊(監訳),協同医書出版社,東京,1996, pp108-110. 20) Bellemans J, Colyn W, Vandenneucker H, et al.: The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res, 2012, 470: 45-53. 26) Monajati A, Larumbe-Zabala E, Goss-Sampson M, et al.: Surface electromyography analysis of three squat exercises. J Hum Kinet, 2019, 67: 73-83. 19) 長妻香織,川島敏生,大見頼一・他:膝前十字靭帯(ACL)損傷理学療法診療ガイドライン.理学療法学,2015, 42: 604-613. 1) 中川 滋,格谷義徳:オープンMRIを用いた膝関節の動作解析.関節外科,2008, 27: 1177-1186. 10) 小澤拓也,金原高志,山下将樹・他:下腿骨回旋可動域の計測方法の再考.J Clin Phys Ther, 2004, 7: 27-33. 25) Kapandji IA: Physiology of the Joints: Volume 2 Lower Limb. Churchill Livingstone, New York, 1983, pp 78-79. 22) Mansfield PJ, Neumann DA:エッセンシャル・キネシオロジー:機能的運動学の基礎と臨床,原著第3版.弓岡光徳,溝田勝彦,村田 伸(監訳),南江堂,東京,2020, pp285-286. 12) 柵木聖也,金森章浩,白木 仁・他:回転円盤型回旋測定器“RotorMeter”を用いた下腿の回旋可動域の測定.日本臨床スポーツ医学会誌,2016, 24: 261-268. 17) Tsai AG, Musahl V, Steckel H, et al.: Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord, 2008, 9: 35. 11) 柵木聖也,石倉孝樹,石関友也・他:回転円盤型測定器“RotorMeter”を用いた膝関節回旋可動域の測定方法の信頼性と妥当性の検討.新潟医療福祉学会誌,2014, 13: 8-14. 24) Shrout PE, Fleiss JL: Intraclass correlations: uses in assessing rater reliability. Psychol Bull, 1979, 86: 420-428. 8) Makowski A, Birmingham T, Kramer J, et al.: Test-retest and interrater reliability of goniometric tibial rotation range of motion. Physiother Can, 2005, 57: 265-273. 23) Landis JR, Koch GG: The measurement of observer agreement for categorical data. Biometrics, 1977, 33: 159-174. 7) Stanek JM, Parish J, Rainville R, et al.: Test-retest and intrarater reliability of assessing tibial rotation range of motion by two devices. Int J Athl Ther Train, 2020, 27: 263-269. 13) Almquist PO, Arnbjörnsson A, Zätterström R, et al.: Evaluation of an external device measuring knee joint rotation: an in vivo study with simultaneous Roentgen stereometric analysis. J Orthop Res, 2002, 20: 427-432. |
References_xml | – reference: 5) 日本整形外科学会,日本リハビリテーション医学会:関節可動域表示ならびに測定法.日本整形外科学会雑誌,1995, 69: 240-250. – reference: 14) Almquist PO, Ekdahl C, Isberg PE, et al.: Measurements of knee rotation-reliability of an external device in vivo. BMC Musculoskelet Disord, 2011, 12: 291. – reference: 7) Stanek JM, Parish J, Rainville R, et al.: Test-retest and intrarater reliability of assessing tibial rotation range of motion by two devices. Int J Athl Ther Train, 2020, 27: 263-269. – reference: 9) 岩崎 翼,宮本 梓,鈴木美幸・他:下腿骨体軸回旋可動域計測方法の妥当性.理学療法群馬,2016, 27: 16-20. – reference: 3) 長尾憲孝,立花敏弘,水野耕作:内側型変形性膝関節症の膝関節回旋運動の異常─超音波断層像を用いた立位荷重時における計測─.日本リウマチ・関節外科学会雑誌,1997, 16: 53-62. – reference: 22) Mansfield PJ, Neumann DA:エッセンシャル・キネシオロジー:機能的運動学の基礎と臨床,原著第3版.弓岡光徳,溝田勝彦,村田 伸(監訳),南江堂,東京,2020, pp285-286. – reference: 2) Nakagawa S, Kadoya Y, Todo S, et al.: Tibiofemoral movement 3: full flexion in the living knee studied by MRI. J Bone Joint Surg Br, 2000, 82: 1199-1200. – reference: 16) Testa R, Chouteau J, Viste A, et al.: Reproducibility of an optical measurement system for the clinical evaluation of active knee rotation in weight-bearing, healthy subjects. Orthop Traumatol Surg Res, 2012, 98: 159-166. – reference: 19) 長妻香織,川島敏生,大見頼一・他:膝前十字靭帯(ACL)損傷理学療法診療ガイドライン.理学療法学,2015, 42: 604-613. – reference: 24) Shrout PE, Fleiss JL: Intraclass correlations: uses in assessing rater reliability. Psychol Bull, 1979, 86: 420-428. – reference: 21) 長嶺隆二,川崎 展,陳 維嘉・他:変形性膝関節症症例において,脛骨関節面の形状は左右で異なる.整形外科と災害外科,2020, 69: 173-176. – reference: 20) Bellemans J, Colyn W, Vandenneucker H, et al.: The Chitranjan Ranawat award: is neutral mechanical alignment normal for all patients? The concept of constitutional varus. Clin Orthop Relat Res, 2012, 470: 45-53. – reference: 25) Kapandji IA: Physiology of the Joints: Volume 2 Lower Limb. Churchill Livingstone, New York, 1983, pp 78-79. – reference: 15) Almquist PO, Ekdahl C, Isberg PE, et al.: Knee rotation in healthy individuals related to age and gender. J Orthop Res, 2013, 31: 23-28. – reference: 13) Almquist PO, Arnbjörnsson A, Zätterström R, et al.: Evaluation of an external device measuring knee joint rotation: an in vivo study with simultaneous Roentgen stereometric analysis. J Orthop Res, 2002, 20: 427-432. – reference: 23) Landis JR, Koch GG: The measurement of observer agreement for categorical data. Biometrics, 1977, 33: 159-174. – reference: 4) Bousquet G, Beguec PL, Girardin P:図解・膝の機能解剖と靭帯損傷.弓削大四郎,井原秀俊(監訳),協同医書出版社,東京,1996, pp108-110. – reference: 18) Alam M, Bull AM, Thomas R, et al.: A clinical device for measuring internal-external rotational laxity of the knee. Am J Sports Med, 2013, 41: 87-94. – reference: 17) Tsai AG, Musahl V, Steckel H, et al.: Rotational knee laxity: reliability of a simple measurement device in vivo. BMC Musculoskelet Disord, 2008, 9: 35. – reference: 11) 柵木聖也,石倉孝樹,石関友也・他:回転円盤型測定器“RotorMeter”を用いた膝関節回旋可動域の測定方法の信頼性と妥当性の検討.新潟医療福祉学会誌,2014, 13: 8-14. – reference: 12) 柵木聖也,金森章浩,白木 仁・他:回転円盤型回旋測定器“RotorMeter”を用いた下腿の回旋可動域の測定.日本臨床スポーツ医学会誌,2016, 24: 261-268. – reference: 6) Ore V, Nasic S, Riad J: Lower extremity range of motion and alignment: a reliability and concurrent validity study of goniometric and three-dimensional motion analysis measurement. Heliyon, 2020, 6: e04713. – reference: 26) Monajati A, Larumbe-Zabala E, Goss-Sampson M, et al.: Surface electromyography analysis of three squat exercises. J Hum Kinet, 2019, 67: 73-83. – reference: 1) 中川 滋,格谷義徳:オープンMRIを用いた膝関節の動作解析.関節外科,2008, 27: 1177-1186. – reference: 10) 小澤拓也,金原高志,山下将樹・他:下腿骨回旋可動域の計測方法の再考.J Clin Phys Ther, 2004, 7: 27-33. – reference: 8) Makowski A, Birmingham T, Kramer J, et al.: Test-retest and interrater reliability of goniometric tibial rotation range of motion. Physiother Can, 2005, 57: 265-273. |
SSID | ssib044759786 ssib058494197 ssib000872131 ssj0027081 ssib006286635 ssib038076118 |
Score | 2.1834517 |
Snippet | [Purpose] This study examined the reliability of measuring the tibial rotation range of motion (ROM) using a spring-type clamping device and the... |
SourceID | proquest jstage |
SourceType | Aggregation Database Publisher |
StartPage | 247 |
SubjectTerms | Range of motion reliability tibial rotation |
Title | Characteristics and Individual Differences in Tibial Rotation Range of Motion: A New Measuring Method in the Prone Position |
URI | https://www.jstage.jst.go.jp/article/rika/37/2/37_247/_article/-char/en https://www.proquest.com/docview/2658323139 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Rigakuryoho Kagaku, 2022, Vol.37(2), pp.247-253 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHDhG7ExkA_cUEriOHbDLRpDLVOmqWvFxCVy0nhNKy2oHwdA4t_i3-P5KzVsh7FLFLlxIvv96vzey3s_I_RWzBiPqpQHLJUyoFUUBSKqwFkZJJyXnIaV3g4oP2XDKf18kVz0er-9rKXtpuxXP26sK7mLVaEN7KqqZP_Dst1NoQHOwb5wBAvD8VY2PrpBbXm0q7D6aDc_MUlXYBZdHTJubYLhWNUV6BSY1mV4ZDrfMddxQxVDyPX-0i4X8mzVAiU9s2lePq0dN5diCdZp5-27E6HOu8jN9Ov0ZGTzNtbbebNsOxuPTrN8dJ59yTRoxEx8b9fzpgPrMDsfmp7tdtH44Qmyc2MVzF3mqUrnc7CbGLUEt3Z5ay-8UIOImd05-rVuIzSmgRLs8RdsoxJjgUn81Zdy70VOjArxtXdEMlASq6tmKfox73d9_hLdtiYt1FVFzAuiD5QX7gdVEwcQvIfuE84jlUua_zr2eBU41t7nVVX_64n-KJF_Fu1IgRZd9HT8gBSmVH_edZGDcGAiB3aGbKEpjOS9Nw4gUQtwKS6v8wpNliaP0UPr5eDMDOMJ6i3EU_TIGQdb4zxDP_9BMAYE4x2CsYdg3Fxhg2DsEIw1gnErsUHwB5xhwC_u8IsNflVXwC_W-MUOv8_R9NPx5GgY2O1AggWwVh6UPErrWoa0rEUSMiGA7M_SmpEZExERbFAKJYcI1yTgZJSVFFKSElYfoODguCfxC7R3Bc95ifAsTlhVK70xcAd4XAuZlEwSkoowKamM9xE3M1l8M5ovxW0BsY8O3dQXdqVYFwRofgyOVJwe3PnGr9AD9fcy0b9DtLdZbevXwIc35RuNvT95s7hO |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+and+Individual+Differences+in+Tibial+Rotation+Range+of+Motion%3A+A+New+Measuring+Method+in+the+Prone+Position&rft.jtitle=Rigakuryoho+Kagaku&rft.au=SUZUKI%2C+Katsuhiko&rft.au=MINAMISAWA%2C+Tadayoshi&rft.au=IHASHI%2C+Kouji&rft.date=2022&rft.pub=The+Society+of+Physical+Therapy+Science&rft.issn=1341-1667&rft.eissn=2434-2807&rft.volume=37&rft.issue=2&rft.spage=247&rft.epage=253&rft_id=info:doi/10.1589%2Frika.37.247&rft.externalDocID=article_rika_37_2_37_247_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1341-1667&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1341-1667&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1341-1667&client=summon |