新聞と掲示板データを用いた日経平均VI予測モデルの提案と評価

Saved in:
Bibliographic Details
Published in人工知能学会論文誌 Vol. 40; no. 4; pp. D-O94_1 - 14
Main Authors 坪内 孝太, 安本 慶一, 細川 蓮, 諏訪 博彦, 上田 健太郎, 服部 宏充, 小川 祐樹, 山下 達雄, 梅原 英一
Format Journal Article
LanguageJapanese
Published 一般社団法人 人工知能学会 01.07.2025
Subjects
Online AccessGet full text
ISSN1346-0714
1346-8030
DOI10.1527/tjsai.40-4_D-O94

Cover

Loading…
Author 山下 達雄
細川 蓮
上田 健太郎
梅原 英一
諏訪 博彦
小川 祐樹
服部 宏充
坪内 孝太
安本 慶一
Author_xml – sequence: 1
  fullname: 坪内 孝太
  organization: LINE ヤフー株式会社
– sequence: 1
  fullname: 安本 慶一
  organization: 奈良先端科学技術大学院大学
– sequence: 1
  fullname: 細川 蓮
  organization: 奈良先端科学技術大学院大学
– sequence: 1
  fullname: 諏訪 博彦
  organization: 奈良先端科学技術大学院大学
– sequence: 1
  fullname: 上田 健太郎
  organization: 奈良先端科学技術大学院大学
– sequence: 1
  fullname: 服部 宏充
  organization: 立命館大学
– sequence: 1
  fullname: 小川 祐樹
  organization: 東京都市大学
– sequence: 1
  fullname: 山下 達雄
  organization: LINE ヤフー株式会社
– sequence: 1
  fullname: 梅原 英一
  organization: 新潟国際情報経営大学
BookMark eNo9kE9LAkEAxYcwqMx7X2JtZmd2djyGZgmCl_I6zG5j7WIWu146rgZ6iIroz8nCKDCKiCIoifwwo6MfIzPp8n6Px-Md3gKIVfYqEoAlBJPIMu3lqh8KL0mgQXjGKKTIDJhHmFCDQQxjUw9tROZAIgw9B0JkYoKgNQ-K-vJlFF2rqKOPX4d3Xd3qqXpD1b9UradqZ8PzjooOVXSjr-6H70eDz7dBq1HM9btN_fGk6reT7qOKnvXJqW43xzOjh4v-d3sRzJZEOZSJKeNgM7u6kV438oW1XHolb_iIUWFIh9jUgZYFMU5R26QpxCRl2IG2tBBybUcwVJLEoSWTSteWAsFxShgztyxBMI6D7N-uH1bFtuT7gbcrggMugqrnliWfHMMJ5GQiv8zw8UH_BXdHBNwX-Adjw386
ContentType Journal Article
Copyright JSAI (The Japanese Society for Artificial Intelligence)
Copyright_xml – notice: JSAI (The Japanese Society for Artificial Intelligence)
DOI 10.1527/tjsai.40-4_D-O94
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1346-8030
EndPage 14
ExternalDocumentID article_tjsai_40_4_40_40_4_D_O94_article_char_ja
GroupedDBID 123
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
ARCSS
CS3
E3Z
EBS
EJD
JSF
KQ8
OK1
PQQKQ
RJT
XSB
ID FETCH-LOGICAL-j186a-eb476b05503396726918e683b07e511c7ba81fe4b6f26ec7ea101c74882d5a433
ISSN 1346-0714
IngestDate Wed Sep 03 06:30:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j186a-eb476b05503396726918e683b07e511c7ba81fe4b6f26ec7ea101c74882d5a433
OpenAccessLink https://www.jstage.jst.go.jp/article/tjsai/40/4/40_40-4_D-O94/_article/-char/ja
ParticipantIDs jstage_primary_article_tjsai_40_4_40_40_4_D_O94_article_char_ja
PublicationCentury 2000
PublicationDate 2025/07/01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025/07/01
  day: 01
PublicationDecade 2020
PublicationTitle 人工知能学会論文誌
PublicationYear 2025
Publisher 一般社団法人 人工知能学会
Publisher_xml – name: 一般社団法人 人工知能学会
References [Feng 19] Feng, F., Chen, H., He, X., Ding, J., Sun, M., and Chua, T.: Enhancing stock movement prediction with adversarial training. in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), pp. 5843-5849 (2019)
[Schumaker 09] Schumaker. R. P. and Chen, H.: A quantitative stock prediction system based on financial news, Information Processing & Management, Vol. 45, No. 5, pp. 571-583 (2009) URL= https://doi.org/10.1016/j.ipm.2009.05.001
[Christie 82] Christie, A. A.: The stochastic behavior of common stock variances: Value, leverage and interest rate effects, Journal of Financial Economics, Vol. 10, No. 4, pp. 407-432 (1982) URL= https://doi.org/10.1016/0304-405X(82)90018-6
[Kudo 06] Kudo, T.: MeCab: Yet another part-of-speech and morphological analyzer, http://mecab.sourceforge.jp (2006)
[Alanyali 13] Alanyali, M., Moat, H. S., and Preis, T.: Quantifying the relationship between financial news and the stock market Scientific Reports, Vol. 3, No. 1, p. 3578 (2013) URL= https://doi.org/10.1038/srep03578
[Nti 21] Nti, I. K., Adekoya, A. F., and Weyori, B. A.: A novel multi-source information-fusion predictive framework based on deep neural networks for accuracy enhancement in stock market prediction, Journal of Big Data, Vol. 8, No. 1. p. 17 (2021) URL= https://doi.org/10.1186/s40537-020-00400-y
[Ramos-Pérez 19] Ramos-Pérez, E., Alonso-González, P. J., and Núñez-Velázquez, J. J.: Forecasting volatility with a stacked model based on a hybridized artificial neural network, Expert Systems with Applications, Vol. 129, pp. 1-9 (2019) URL= https://doi.org/10.1016/j.eswa.2019.03.046
[Tan 21] Tan, S. D. and Tas, O.: Social media sentiment in international stock returns and trading activity, Journal of Behavioral Finance, Vol. 22, No. 4, pp. 221-234 (2021) URL= https://doi.org/10.1080/15427560.2020.1772261
[Bagla 24] Bagla, K., Kumar, A., Gupta, S., and Gupta, A.: Noisy Text Data: Foible of popular Transformer based NLP models, in Proceedings of the 3rd International Conference on AI-ML Systems, pp. 1-6 (2024)
[Sasaki 20] Sasaki, K.. Suwa, H., Ogawa, Y., Umehara, Е., Yamashita, T., and Tsubouchi, K.: Evaluation of VI index forecasting model by machine learning for Yahoo! stock bbs using volatility trading simulation, in Hawaii International Conference on System Sciences (HICSS), pp. 1-9 (2020)
[Sato 15] Sato, T.: Neologism dictionary based on the language resources on the web for MeCab, https://github.com/ neologd/mecab-ipadic-neologd (2015)
[Katsafados 21] Katsafados, A. G., Androutsopoulos, I., Chalkidis, I., Fergadiotis, E., Leledakis, G. N., and Pyrgiotakis, E. G.: Using textual analysis to identify merger participants: Evidence from the U.S. banking industry. Finance Research Letters, Vol. 42, p. 101949 (2021) URL= https://doi.org/10.1016/j.frl.2021.101949
[Chen 15] Chen, K., Zhou, Y., and Dai, F.: A LSTM-based method for stock returns prediction: A case study of China stock market, in 2015 IEEE International Conference on Big Data (Big Data), pp. 2823-2824 (2015)
[Lundberg 17] Lundberg, S. M. and Lee, S.-L.: A unified approach to interpreting model predictions, in Proceedings of the 31st International Conference on Neural Information Processing Systems, Vol. 30, pp. 4765-4774 (2017)
[Zhao 22] Zhao, X. and Liu, Y.: False awareness stock market prediction by LightGBM with focal loss, in Proceedings of the Conference on Research in Adaptive and Convergent Systems (RACS), pp. 147--152 (2022)
[Takamura 05] Takamura, H., Inui, T., and Okumura, M.: Extracting semantic orientations of words using spin model, in Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pp. 133-140 (2005)
[Gunnarsson 24] Gunnarsson, E. S., Isern, H. R., Kaloudis, A., Ristad, M., Vigdel, B., and Westgaard, S.: Prediction of realized volatility and implied volatility indices using Al and machine learning: A review, International Review of Financial Analysis, Vol. 93. p. 103221 (2024) URL= https://doi.org/10.1016/j.irfa.2024.103221
[Welch 08] Welch, I. and Goyal, A.: A comprehensive look at the empirical performance of equity premium prediction, The Review of Financial Studies, Vol. 21, No. 4, pp. 1455-1508 (2008) URL= https://doi.org/10.1093/rfs/hhm014
[Ahn 12] Ahn, J. J., Kim, D. H., Oh, K. J., and Kim, T. Y.: Applying option greeks to directional forecasting of implied volatility in the options market: An intelligent approach, Expert Systems with Applications, Vol. 39, No. 10, pp. 9315–9322 (2012) URL= https://doi.org/10.1016/j.eswa.2012.02.070
[Khan 22] Khan, W., Ghazanfar, M. A., Azam, M. A., Karami, A., Alyoubi, K. H., and Alfakeeh, A. S.: Stock market prediction using machine learning classifiers and social media, news, Journal of Ambient Intelligence and Humanized Computing, Vol. 13, No. 7, pp. 3433–3456 (2022)
[Ueda 21]Ueda, K., Sasaki, K., Suwa, H., Ogawa, Y., Umehara, E., Yamashita, T., Tsubouchi, K., and Yasumoto, K.: Prediction of Nikkei VI increase for reducing investment risk using Yahoo! JAPAN stock BBS, in Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence Workshop/Special Session, pp. 126–133 (2021)
[Gu 20] Gu, C. and Kurov, A.: Informational Role of Social Media: Evidence from Twitter Sentiment, Journal of Banking & Finance, Vol. 121, (2020) URL= https://doi.org/10.1016/j.jbankfin.2020.105969
[Duan 18] Duan, J., Zhang, Y., Ding, X., Chang, C. Y., and Liu, T.: Learning target-specific representations of financial news documents for cumulative abnormal return prediction, in Proceedings of the 27th International Conference on Computational Linguistics, pp. 2823-2833 (2018)
[Song 18] Song, Y., Wang, H., and Zhu, M.: Sustainable strategy for corporate governance based on the sentiment analysis of financial reports with CSR, Finane Innov, Vol. 4 No. 2 (2018) URL= https://doi.org/10.1186/s40854-018-0086-0
[Blei 03] Blei, D. M., Ng, A. Y., and Jordan, M. I.: Latent dirichlet allocation, Journal of Machine Learning Research, Vol. 3, pp. 993– 1022 (2003)
[Bollen 11] Bollen, J., Mao, H., and Zeng, X.: Twitter mood predicts the stock market, Journal of Computational Science, Vol. 2, No. 1, pp. 1-8 (2011) URL= https://doi.org/10.1016/j.jocs.2010.12.007
[Long 19] Long, W., Lu, Z., and Cui, L.: Deep learning-based feature engineering for stock price movement prediction, Knowledge-Based Systems, Vol. 164, pp. 163-173 (2019) URL= https://doi.org/10.1016/j.knosys.2018.10.034
[Ding 15] Ding. X., Zhang, Y., Liu, T., and Duan, J.: Deep learning for event-driven stock prediction, in Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI 15), pp. 2327-2333 (2015)
[Tetlock 08] Tetlock, P. C., Saar-Tsechansky, M., and Macskassy, S.: More than words: Quantifying language to measure firms fundamentals, The Journal of Finance, Vol. 63, No. 3, pp. 1437-1467 (2008) URL= https://doi.org/10.1111/j.1540-6261.2008.01362.x
[Bhandari 22] Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., and Khatri, R. K. C.: Predicting stock market index using LSTM, Machine Learning with Applications, Vol. 9, p. 100320 (2022) URL= https://doi.org/10.1016/j.mlwa.2022.100320
[Ueda 24] Ueda, K., Suwa, H., Yamada, M., Ogawa, Y., Umehara, E., Yamashita, T., Tsubouchi, K., and Yasumoto, K.: SSCDV: Social media document embedding with sentiment and topics for financial market forecasting, Expert Systems with Applications, Vol. 245, p. 122988 (2024)
[Oliveira 17] Oliveira, N., Cortez, P., and Areal, N.: The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume and survey sentiment indices, Expert Systems with Applications, Vol. 73, pp. 125–144 (2017)
[Hong 24] Hong, M., Chen, Z., Mahmoud Soliman, W., and Zhang, K.: A comparative study of ISTM, lightGBM, and autoregressive model in narrow-Based ETF market prediction with multi-ticker models, in Proceedings of the 6th International Conference on Machine Learning and Machine Intelligence, MLMI 23, pp. 10-16 (2024)
[Huynh 21] Huynh, D., Audet, G., Alabi, N., and Tian, Y.: Stock price prediction leveraging reddit: The role of trust filter and sliding window, in 2021 IEEE International Conference on Big Data (Big Data). pp. 1054-1060 (2021)
[Ke 17] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.: LightGBM: A highly efficient gradient boosting decision tree, in Advances in Neural Information Processing Systems 30, pp. 3146–3154 (2017)
[Gangopadhyay 23] Gangopadhyay, S. and Majumder, P.: Text representation for direction prediction of share market, Expert Systems with Applications, Vol. 211, (2023) URL= https://doi.org/10.1016/j.eswa.2022.118472
[Li 17] Li, B., Chan, K. C. C., Ou, C., and Sun, R.: Discovering public sentiment in social media for predicting stock movement of publicly listed companies, Information Systems, Vol. 69, pp. 81–92 (2017)
[Shirata 11] Shirata, C. Y., Takeuchi, H., Ogino, S., and Watanabe, H.: Extracting key phrases as predictors of corporate bankruptcy: empirical analysis of annual reports by text mining, Journal of Emerging Technologies in Accounting, Vol. 8, pp. 31-44 (2011) URL= https://doi.org/10.2308/jeta-10182
[Suwa 17] Suwa, H., Ogawa, Y., Umehara, E., Kakigi, K., Yasumoto, K., Yamashita, T., and Tsubouchi, K.: Develop method to predict the increase in the Nikkei VI index, in 2017 IEEE International Conference on Big Data (Big Data), pp. 3133-3138 (2017)
[Wu 22] Wu, S., Liu, Y., Zou, Z., and Weng, T.-H.: S I LSTM: Stock price prediction based on multiple data sources and sentiment analysis, Connection Science, Vol. 34, No. 1, pp. 44–62 (2022)
References_xml – reference: [Ueda 21]Ueda, K., Sasaki, K., Suwa, H., Ogawa, Y., Umehara, E., Yamashita, T., Tsubouchi, K., and Yasumoto, K.: Prediction of Nikkei VI increase for reducing investment risk using Yahoo! JAPAN stock BBS, in Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence Workshop/Special Session, pp. 126–133 (2021)
– reference: [Ding 15] Ding. X., Zhang, Y., Liu, T., and Duan, J.: Deep learning for event-driven stock prediction, in Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI 15), pp. 2327-2333 (2015)
– reference: [Feng 19] Feng, F., Chen, H., He, X., Ding, J., Sun, M., and Chua, T.: Enhancing stock movement prediction with adversarial training. in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), pp. 5843-5849 (2019)
– reference: [Gunnarsson 24] Gunnarsson, E. S., Isern, H. R., Kaloudis, A., Ristad, M., Vigdel, B., and Westgaard, S.: Prediction of realized volatility and implied volatility indices using Al and machine learning: A review, International Review of Financial Analysis, Vol. 93. p. 103221 (2024) URL= https://doi.org/10.1016/j.irfa.2024.103221
– reference: [Bollen 11] Bollen, J., Mao, H., and Zeng, X.: Twitter mood predicts the stock market, Journal of Computational Science, Vol. 2, No. 1, pp. 1-8 (2011) URL= https://doi.org/10.1016/j.jocs.2010.12.007
– reference: [Schumaker 09] Schumaker. R. P. and Chen, H.: A quantitative stock prediction system based on financial news, Information Processing & Management, Vol. 45, No. 5, pp. 571-583 (2009) URL= https://doi.org/10.1016/j.ipm.2009.05.001
– reference: [Bhandari 22] Bhandari, H. N., Rimal, B., Pokhrel, N. R., Rimal, R., Dahal, K. R., and Khatri, R. K. C.: Predicting stock market index using LSTM, Machine Learning with Applications, Vol. 9, p. 100320 (2022) URL= https://doi.org/10.1016/j.mlwa.2022.100320
– reference: [Gangopadhyay 23] Gangopadhyay, S. and Majumder, P.: Text representation for direction prediction of share market, Expert Systems with Applications, Vol. 211, (2023) URL= https://doi.org/10.1016/j.eswa.2022.118472
– reference: [Alanyali 13] Alanyali, M., Moat, H. S., and Preis, T.: Quantifying the relationship between financial news and the stock market Scientific Reports, Vol. 3, No. 1, p. 3578 (2013) URL= https://doi.org/10.1038/srep03578
– reference: [Welch 08] Welch, I. and Goyal, A.: A comprehensive look at the empirical performance of equity premium prediction, The Review of Financial Studies, Vol. 21, No. 4, pp. 1455-1508 (2008) URL= https://doi.org/10.1093/rfs/hhm014
– reference: [Tan 21] Tan, S. D. and Tas, O.: Social media sentiment in international stock returns and trading activity, Journal of Behavioral Finance, Vol. 22, No. 4, pp. 221-234 (2021) URL= https://doi.org/10.1080/15427560.2020.1772261
– reference: [Ahn 12] Ahn, J. J., Kim, D. H., Oh, K. J., and Kim, T. Y.: Applying option greeks to directional forecasting of implied volatility in the options market: An intelligent approach, Expert Systems with Applications, Vol. 39, No. 10, pp. 9315–9322 (2012) URL= https://doi.org/10.1016/j.eswa.2012.02.070
– reference: [Song 18] Song, Y., Wang, H., and Zhu, M.: Sustainable strategy for corporate governance based on the sentiment analysis of financial reports with CSR, Finane Innov, Vol. 4 No. 2 (2018) URL= https://doi.org/10.1186/s40854-018-0086-0
– reference: [Ueda 24] Ueda, K., Suwa, H., Yamada, M., Ogawa, Y., Umehara, E., Yamashita, T., Tsubouchi, K., and Yasumoto, K.: SSCDV: Social media document embedding with sentiment and topics for financial market forecasting, Expert Systems with Applications, Vol. 245, p. 122988 (2024)
– reference: [Gu 20] Gu, C. and Kurov, A.: Informational Role of Social Media: Evidence from Twitter Sentiment, Journal of Banking & Finance, Vol. 121, (2020) URL= https://doi.org/10.1016/j.jbankfin.2020.105969
– reference: [Hong 24] Hong, M., Chen, Z., Mahmoud Soliman, W., and Zhang, K.: A comparative study of ISTM, lightGBM, and autoregressive model in narrow-Based ETF market prediction with multi-ticker models, in Proceedings of the 6th International Conference on Machine Learning and Machine Intelligence, MLMI 23, pp. 10-16 (2024)
– reference: [Blei 03] Blei, D. M., Ng, A. Y., and Jordan, M. I.: Latent dirichlet allocation, Journal of Machine Learning Research, Vol. 3, pp. 993– 1022 (2003)
– reference: [Takamura 05] Takamura, H., Inui, T., and Okumura, M.: Extracting semantic orientations of words using spin model, in Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pp. 133-140 (2005)
– reference: [Christie 82] Christie, A. A.: The stochastic behavior of common stock variances: Value, leverage and interest rate effects, Journal of Financial Economics, Vol. 10, No. 4, pp. 407-432 (1982) URL= https://doi.org/10.1016/0304-405X(82)90018-6
– reference: [Suwa 17] Suwa, H., Ogawa, Y., Umehara, E., Kakigi, K., Yasumoto, K., Yamashita, T., and Tsubouchi, K.: Develop method to predict the increase in the Nikkei VI index, in 2017 IEEE International Conference on Big Data (Big Data), pp. 3133-3138 (2017)
– reference: [Kudo 06] Kudo, T.: MeCab: Yet another part-of-speech and morphological analyzer, http://mecab.sourceforge.jp (2006)
– reference: [Ke 17] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T.-Y.: LightGBM: A highly efficient gradient boosting decision tree, in Advances in Neural Information Processing Systems 30, pp. 3146–3154 (2017)
– reference: [Khan 22] Khan, W., Ghazanfar, M. A., Azam, M. A., Karami, A., Alyoubi, K. H., and Alfakeeh, A. S.: Stock market prediction using machine learning classifiers and social media, news, Journal of Ambient Intelligence and Humanized Computing, Vol. 13, No. 7, pp. 3433–3456 (2022)
– reference: [Lundberg 17] Lundberg, S. M. and Lee, S.-L.: A unified approach to interpreting model predictions, in Proceedings of the 31st International Conference on Neural Information Processing Systems, Vol. 30, pp. 4765-4774 (2017)
– reference: [Chen 15] Chen, K., Zhou, Y., and Dai, F.: A LSTM-based method for stock returns prediction: A case study of China stock market, in 2015 IEEE International Conference on Big Data (Big Data), pp. 2823-2824 (2015)
– reference: [Nti 21] Nti, I. K., Adekoya, A. F., and Weyori, B. A.: A novel multi-source information-fusion predictive framework based on deep neural networks for accuracy enhancement in stock market prediction, Journal of Big Data, Vol. 8, No. 1. p. 17 (2021) URL= https://doi.org/10.1186/s40537-020-00400-y
– reference: [Shirata 11] Shirata, C. Y., Takeuchi, H., Ogino, S., and Watanabe, H.: Extracting key phrases as predictors of corporate bankruptcy: empirical analysis of annual reports by text mining, Journal of Emerging Technologies in Accounting, Vol. 8, pp. 31-44 (2011) URL= https://doi.org/10.2308/jeta-10182
– reference: [Wu 22] Wu, S., Liu, Y., Zou, Z., and Weng, T.-H.: S I LSTM: Stock price prediction based on multiple data sources and sentiment analysis, Connection Science, Vol. 34, No. 1, pp. 44–62 (2022)
– reference: [Bagla 24] Bagla, K., Kumar, A., Gupta, S., and Gupta, A.: Noisy Text Data: Foible of popular Transformer based NLP models, in Proceedings of the 3rd International Conference on AI-ML Systems, pp. 1-6 (2024)
– reference: [Sato 15] Sato, T.: Neologism dictionary based on the language resources on the web for MeCab, https://github.com/ neologd/mecab-ipadic-neologd (2015)
– reference: [Ramos-Pérez 19] Ramos-Pérez, E., Alonso-González, P. J., and Núñez-Velázquez, J. J.: Forecasting volatility with a stacked model based on a hybridized artificial neural network, Expert Systems with Applications, Vol. 129, pp. 1-9 (2019) URL= https://doi.org/10.1016/j.eswa.2019.03.046
– reference: [Long 19] Long, W., Lu, Z., and Cui, L.: Deep learning-based feature engineering for stock price movement prediction, Knowledge-Based Systems, Vol. 164, pp. 163-173 (2019) URL= https://doi.org/10.1016/j.knosys.2018.10.034
– reference: [Sasaki 20] Sasaki, K.. Suwa, H., Ogawa, Y., Umehara, Е., Yamashita, T., and Tsubouchi, K.: Evaluation of VI index forecasting model by machine learning for Yahoo! stock bbs using volatility trading simulation, in Hawaii International Conference on System Sciences (HICSS), pp. 1-9 (2020)
– reference: [Tetlock 08] Tetlock, P. C., Saar-Tsechansky, M., and Macskassy, S.: More than words: Quantifying language to measure firms fundamentals, The Journal of Finance, Vol. 63, No. 3, pp. 1437-1467 (2008) URL= https://doi.org/10.1111/j.1540-6261.2008.01362.x
– reference: [Zhao 22] Zhao, X. and Liu, Y.: False awareness stock market prediction by LightGBM with focal loss, in Proceedings of the Conference on Research in Adaptive and Convergent Systems (RACS), pp. 147--152 (2022)
– reference: [Duan 18] Duan, J., Zhang, Y., Ding, X., Chang, C. Y., and Liu, T.: Learning target-specific representations of financial news documents for cumulative abnormal return prediction, in Proceedings of the 27th International Conference on Computational Linguistics, pp. 2823-2833 (2018)
– reference: [Li 17] Li, B., Chan, K. C. C., Ou, C., and Sun, R.: Discovering public sentiment in social media for predicting stock movement of publicly listed companies, Information Systems, Vol. 69, pp. 81–92 (2017)
– reference: [Huynh 21] Huynh, D., Audet, G., Alabi, N., and Tian, Y.: Stock price prediction leveraging reddit: The role of trust filter and sliding window, in 2021 IEEE International Conference on Big Data (Big Data). pp. 1054-1060 (2021)
– reference: [Katsafados 21] Katsafados, A. G., Androutsopoulos, I., Chalkidis, I., Fergadiotis, E., Leledakis, G. N., and Pyrgiotakis, E. G.: Using textual analysis to identify merger participants: Evidence from the U.S. banking industry. Finance Research Letters, Vol. 42, p. 101949 (2021) URL= https://doi.org/10.1016/j.frl.2021.101949
– reference: [Oliveira 17] Oliveira, N., Cortez, P., and Areal, N.: The impact of microblogging data for stock market prediction: Using Twitter to predict returns, volatility, trading volume and survey sentiment indices, Expert Systems with Applications, Vol. 73, pp. 125–144 (2017)
SSID ssib001234105
ssib008501343
ssib047348305
ssib000961560
ssj0057238
ssib006575950
Score 2.4283717
SourceID jstage
SourceType Publisher
StartPage D-O94_1
SubjectTerms machine learning
mass media
social media
volatility index
Title 新聞と掲示板データを用いた日経平均VI予測モデルの提案と評価
URI https://www.jstage.jst.go.jp/article/tjsai/40/4/40_40-4_D-O94/_article/-char/ja
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 人工知能学会論文誌, 2025/07/01, Vol.40(4), pp.D-O94_1-14
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RANJR68eK3-E0PzmlJzSaTycxJJpssraIitKW3kGSz4B6q6PbibVuhPYiK-HGqUlGoKCKKoEXsj0m77c_wzcvsJlQPtsKSfUzevM8M771kPgzjYsJpDKE0Nmnatk3qJrEphJeaSbuVQPbABcNNkq5dZxPT9MqsOzsyalZmLc13k_H0_l_XlezHq9AGflWrZPfg2SFRaAAY_AtX8DBc_8nHJGREMOJbJOSQEhIRktBRgOTqFg-Jb5PQI5ISXyJyQPwm4sDP04DfQMAe3LKJwF6CIh0kyKkGRBPpAE1X4fgu4dDdJb4gvqMAYMG9mUkSIk-OgvicyIbmJu3d_KU_kDpEqZtEWAqQdew-VAiICCJcpBzC3WperdkpLUGWgXQgrAI4ahmoWzIgkiFygwiJNH1lwsKQSiRoAbGH7461ShIJc0Bxa5qOKAiCkWQVGZTgAuk1QOkaagQiFUxBEqtEBvNRdB6KLIKa4i7AIGGJgwKCSRSgREPuPEDhXaWUZNUXN7Y7nORbDLUhWzRD4YfigQhRNZ9IB13kDEyrrFjbnz0rEc6hDFetFQlA2cYt_YFMh8ViFy09_GklxgXmDUGjeiVlKoj9EYxdW00H6HbuxbfGqWXSCHuWicdwOqgeQBGiRtSKKF7UfxApZgMEtRIx6kA5dMCGqlCd1HL1ZqWaEKxerfYhKVOTmMvwog6jrXzE5y7UP-VudFRt9IThr0jkXHUeH76v0RbTsxxArUu7lYL8tQPV3GAmKCanU0eMQ7qqHJOFAkeNkU58zDg8OLFlTAfw48ZM_8Xnnd6rvLfWf_Rl--16f2UjX1zKF3_mCxv5wtPtZ2t570Hee91_-W7728OtH1-3VpZmJjfXl_vfP-aLbxD3Q9771H_8pL-6DGR23j_f_LV6wphuhlONCVOfrGJ26pzFZpZQjyWWq-YwCObZTNR5xriTWF4GFVjqJTGvtzOasLbNstTLYojcqQfB3m65MXWck8bo3O257JQx5rXasUgFT9u0RVPmJY7HWy3G6ylYO22np43LhWWiO8X2OdFevX3mvymcNQ6WA_CcMdq9O5-dh1qim1zAJ-g3rpXqHw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%96%B0%E8%81%9E%E3%81%A8%E6%8E%B2%E7%A4%BA%E6%9D%BF%E3%83%87%E3%83%BC%E3%82%BF%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E6%97%A5%E7%B5%8C%E5%B9%B3%E5%9D%87VI%E4%BA%88%E6%B8%AC%E3%83%A2%E3%83%87%E3%83%AB%E3%81%AE%E6%8F%90%E6%A1%88%E3%81%A8%E8%A9%95%E4%BE%A1&rft.jtitle=%E4%BA%BA%E5%B7%A5%E7%9F%A5%E8%83%BD%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E8%AA%8C&rft.au=%E5%9D%AA%E5%86%85+%E5%AD%9D%E5%A4%AA&rft.au=%E5%AE%89%E6%9C%AC+%E6%85%B6%E4%B8%80&rft.au=%E7%B4%B0%E5%B7%9D+%E8%93%AE&rft.au=%E8%AB%8F%E8%A8%AA+%E5%8D%9A%E5%BD%A6&rft.date=2025-07-01&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BA%BA%E5%B7%A5%E7%9F%A5%E8%83%BD%E5%AD%A6%E4%BC%9A&rft.issn=1346-0714&rft.eissn=1346-8030&rft.volume=40&rft.issue=4&rft.spage=D-O94_1&rft.epage=14&rft_id=info:doi/10.1527%2Ftjsai.40-4_D-O94&rft.externalDocID=article_tjsai_40_4_40_40_4_D_O94_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-0714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-0714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-0714&client=summon