鋼材の硝酸腐食を活用する疲労寿命延伸技術に及ぼす応力比と亀裂長さの影響

Saved in:
Bibliographic Details
Published in溶接学会論文集 Vol. 43; no. 2; pp. 337 - 348
Main Authors 柴田 誉, 河野 拳也, 佐藤 啓介, 堤 成一郎
Format Journal Article
LanguageJapanese
Published 一般社団法人 溶接学会 2025
Online AccessGet full text
ISSN0288-4771
2434-8252
DOI10.2207/qjjws.43.337

Cover

Author 河野 拳也
堤 成一郎
佐藤 啓介
柴田 誉
Author_xml – sequence: 1
  fullname: 柴田 誉
  organization: 住友重機械工業株式会社・大阪大学工学研究科
– sequence: 1
  fullname: 河野 拳也
  organization: 大阪大学工学研究科
– sequence: 1
  fullname: 佐藤 啓介
  organization: 住友重機械工業株式会社
– sequence: 1
  fullname: 堤 成一郎
  organization: 大阪大学工学研究科
BookMark eNo9kF1LwmAAhV_CIDPv-huz92t7t6sI6QuEbup6zH3UhlltQnTnBG_mRVYaRImIN0KQFFKSij9mbrp_0fqgm3MuzsPhcFZBonhW1AFYRzCDMWQbF5Z16WQoyRDClkASU0I5EfM4AZIQiyJHGUMrIO04Zh5CXoJIZGISmFFtHLbqvvsy77Si6nBRrUfdtl-5DQejeaPnuw9-pTa_fwu8QdCfBjeTYPQ-Gw9Dr7zo3Pnuc3Dt-e44xoLpU-A9hv2G7_Zmn-VFtxI1P3y3GTcHk9eoPV0Dy4ZScPT0n6fA0c72YXaPyx3s7me3cpyFRL7EGcwgqiZohElQRRhJNE8NxdBUCesaNCiNl-uihIWY03hJkHSVSQbSecEQGY8UkgKbv72WU1KOdfncNk8V-0pW7JKpFnT55yeZEhl_S3zWf6KeKLZsKeQLiiGMPQ
ContentType Journal Article
Copyright 2025 社団法人 溶接学会
Copyright_xml – notice: 2025 社団法人 溶接学会
DOI 10.2207/qjjws.43.337
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2434-8252
EndPage 348
ExternalDocumentID article_qjjws_43_2_43_337_article_char_ja
GroupedDBID 123
2WC
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j185t-f7f3cd6d3790c12194b4fafdc92ed0f44901e89267f3d5969ec79f1e56f8751a3
ISSN 0288-4771
IngestDate Wed Sep 03 06:30:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j185t-f7f3cd6d3790c12194b4fafdc92ed0f44901e89267f3d5969ec79f1e56f8751a3
OpenAccessLink https://www.jstage.jst.go.jp/article/qjjws/43/2/43_337/_article/-char/ja
PageCount 12
ParticipantIDs jstage_primary_article_qjjws_43_2_43_337_article_char_ja
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle 溶接学会論文集
PublicationYear 2025
Publisher 一般社団法人 溶接学会
Publisher_xml – name: 一般社団法人 溶接学会
References 2) H. Kitagawa, S. Toyohira and K. Ikeda: A New Method of Arresting Fatigue Crack Growth by Artificial Wedge, Proceeding of an International Conference on Fracture Mechanics in Engineering Application (1979), 281-293, https://doi.org/10.1007/978-94-009-9574-1_22.
22) H. Shibata, K. Satoh, R. Fincato and S. Tsutsumi: Elasto-plastic Fatigue Crack Propagation Analysis Considering Crack Surface Corrosion Effect, Japanese Journal of JSCE, 80-15 (2024), https://doi.org/10.2208/jscejj.23-15030. (in Japanese
25) Y. Cao, S. Zhang and K. Tanaka: Calculation Method for Maximum Low-cycle Fatigue Loads Using FRASTA Reconstruction Data, International Journal of Fracture, 182 (2013), 157-166, https://doi.org/10.1007/s10704-013-9862-z.
3) P.S. Song, S. Hwang and C.S. Shin: Effect of Artificial Closure Materials on Crack Growth Retardation, Engineering Fracture Mechanics, 60-1 (1998), 47-58, https://doi.org/10.1016/S0013-7944(97)00180-X.
4) I. Takahashi, C. Takahashi and N. Kotani: Restraint of Fatigue Crack Propagation by Wedge Effects of Fine Particles, Journal of the Society of Naval Architects of Japan, 1998-184 (1998), 361-367, https://doi.org/10.2534/jjasnaoe1968.1998.184_361. (in Japanese
6) K. Kawamoto, T. Yamada and Y. Ohtsuka: Life Prolonging Technology Using Fine Particle Paste for Steel Structure with Fatigue Crack, Journal of the Japan Welding Society, 83-3 (2014), 182-184, https://doi.org/10.2207/jjws.83.182. (in Japanese
19) S. Tsutsumi, H. Nagahama and R. Fincato: Fatigue Crack Initiation and Propagation Life of Steels Predicted by Local Elastoplasticity Response, Japanese Journal of JSCE A2 (Applied Mechanics), 75-2 (2019), I_445-I_453, https://doi.org/10.2208/jscejam.75.2_I_445. (in Japanese
11) M. Shimizu, K. Tateishi, T. Hanji and C.A. Putri: Retardation of Fatigue Crack Growth by Injection of Corrosion Accelerator, The Proceedings of the 12th International Symposium on Steel Structures, (2023), https://link.springer.com/journal/13296/updates/18860470.
18) H. Shibata, K. Satoh, P. Luo and S. Tsutsumi: Quantitative Evaluation of Corrosion Products of Crack Face on Fatigue Crack Propagation Properties, 溶接構造シンポジウム2023講演論文集, 392-395 (2023) (in Japanese
20) S. Tsutsumi, H. Nagahama, Y. Kiyokawa and R. Fincato: Fatigue Crack Propagation Life Assessment of Steels Predicted by Local Elastoplasticity Response – Surface Crack Propagation Property in Stress Concentration Field -, Japanese Journal of JSCE A2 (Applied Mechanics), 76-2 (2020), I_399-I_410, https://doi.org/10.2208/jscejam.76.2_I_399. (in Japanese
14) T. Kobayashi: Fracture Process Reconstruction Method (FRASTA) and Its Hidden Potential, Journal of the Society of Materials Science, Japan, 65-11 (2016), 801-811, https://doi.org/10.2472/jsms.65.801. (in Japanese
21) K. Morita, M. Mouri, B. Ayang, R. Fincato and S. Tsutsumi: Evaluation of Fatigue Crack Propagation Behavior in Low Carbon Steel and Their Simulated HAZ and Fatigue Life Assessment of Non-load Carrying Welded Fillet Joint (Assessment of Fatigue Performance of Welded Joints Considering Cyclic Elasto-plasticity Response), Quartery Journal of the Japan Welding Society, 40-1 (2022), 27-35, https://doi.org/10.2207/qjjws.40.27. (in Japanese
10) C.A. Putri, K. Tateishi, M. Shimizu and T. Hanji: Retardation of Fatigue Crack Growth by Corrosion Accelerator Injection, Steel Construction Engineering, 28-112 (2021), 111-116, https://doi.org/10.11273/jssc.28.112_111.
7) P.S. Song, B.C. Sheu and H.H. Chou: Deposition of Plating Metals to Improve Crack Growth Life, International Journal of Fatigue, 23-3 (2001), 259-270, https://doi.org/10.1016/S0142-1123(00)00084-0.
13) T. Kobayashi and D.A. Shockey: Fracture Analysis Via FRASTA Part2: Determining Fracture Mechanisms and Parameters, Advanced Materials & Processes, 140-6 (1991), 24-32.
16) M. Fujiwara and T. Hattori: Current Fractographic Research and Its Application V: The Fractographic Technique for Failure Analysis -FRASTA and Quantitative Evaluation of Applied Stress by Surface Roughness-, Journal of the Society of Materials Science, Japan, 47-10 (1998), 1088-1092, https://doi.org/10.2472/jsms.47.1088. (in Japanese
9) K. Endo, K. Komai and K. Ohnishi: Crack Propagation of Corrosion Fatigue under Service Loads, Journal of the Society of Materials Science, Japan, 18-184 (1969), 12-17, https://doi.org/10.2472/jsms.18.12. (in Japanese
8) K. Endo, K. Komai and K. Ohnishi: Effects of Stress History and Corrosive Environment on Fatigue Crack Propagation, Journal of the Society of Materials Science, Japan, 17-173 (1968), 160-168, https://doi.org/10.2472/jsms.17.160. (in Japanese
17) H. Shibata, P. Luo, K. Satoh, T. Yonezawa and S. Tsutsumi: Effect of Corrosion Products of Crack Face by Nitric Acid on Fatigue Crack Propagation Properties, Journal of the Society of Materials Science, Japan, 72-12 (2023), 873-878, https://doi.org/10.2472/jsms.72.873. (in Japanese
12) T. Kobayashi and D.A. Shockey: FRASTA: A New Way to Analyze Fracture Surfaces Part 1: Reconstructing Crack Histories, Advanced Materials & Processes, 140-5 (1991), 28-34.
24) Y. Cao and K. Tanaka: Determination of the CTOA and J Integral by Fracture Surface Topography Analysis, International Journal of Fracture, 139 (2006), 253-266, https://doi.org/10.1007/s10704-006-0042-2.
5) I. Takahashi, M. Ushijima, C. Takahashi, S. Uematsu and N. Kotani: Automatic Restraint and Visual Detection of Fatigue Crack Growth by Applying an Alumina Paste, Quartery Journal of the Japan Welding Society, 22-4 (2004), 531-541, https://doi.org/10.2207/qjjws.22.531. (in Japanese
15) S. Yamasaki, T. Takahashi and T. Kobayashi: Analysis of Crack Initiation and Propagation Process in Delayed Fracture by FRASTA (Fracture-surface Topography Analysis) Method, Tetsu-to-Hagané, 83-8 (1997), 526-531, https://doi.org/10.2355/tetsutohagane1955.83.8_526. (in Japanese
1) W. Elber: The Significance of Fatigue Crack Closure, ASTM STP, 486 (1971), 230-242, https://doi.org/10.1520/STP26680S.
23) T. Yonezawa, P. Luo and S. Tsutsumi: Evaluation of Fatigue Crack Propagation Behavior of Structural Steel with Different Thickness Using Digital Image Correlation Method, Journal of the Society of Materials Science, Japan, 72-12, (2023), 852-857, https://doi.org/10.2472/jsms.72.852. (in Japanese
References_xml – reference: 10) C.A. Putri, K. Tateishi, M. Shimizu and T. Hanji: Retardation of Fatigue Crack Growth by Corrosion Accelerator Injection, Steel Construction Engineering, 28-112 (2021), 111-116, https://doi.org/10.11273/jssc.28.112_111.
– reference: 13) T. Kobayashi and D.A. Shockey: Fracture Analysis Via FRASTA Part2: Determining Fracture Mechanisms and Parameters, Advanced Materials & Processes, 140-6 (1991), 24-32.
– reference: 6) K. Kawamoto, T. Yamada and Y. Ohtsuka: Life Prolonging Technology Using Fine Particle Paste for Steel Structure with Fatigue Crack, Journal of the Japan Welding Society, 83-3 (2014), 182-184, https://doi.org/10.2207/jjws.83.182. (in Japanese)
– reference: 11) M. Shimizu, K. Tateishi, T. Hanji and C.A. Putri: Retardation of Fatigue Crack Growth by Injection of Corrosion Accelerator, The Proceedings of the 12th International Symposium on Steel Structures, (2023), https://link.springer.com/journal/13296/updates/18860470.
– reference: 3) P.S. Song, S. Hwang and C.S. Shin: Effect of Artificial Closure Materials on Crack Growth Retardation, Engineering Fracture Mechanics, 60-1 (1998), 47-58, https://doi.org/10.1016/S0013-7944(97)00180-X.
– reference: 25) Y. Cao, S. Zhang and K. Tanaka: Calculation Method for Maximum Low-cycle Fatigue Loads Using FRASTA Reconstruction Data, International Journal of Fracture, 182 (2013), 157-166, https://doi.org/10.1007/s10704-013-9862-z.
– reference: 4) I. Takahashi, C. Takahashi and N. Kotani: Restraint of Fatigue Crack Propagation by Wedge Effects of Fine Particles, Journal of the Society of Naval Architects of Japan, 1998-184 (1998), 361-367, https://doi.org/10.2534/jjasnaoe1968.1998.184_361. (in Japanese)
– reference: 15) S. Yamasaki, T. Takahashi and T. Kobayashi: Analysis of Crack Initiation and Propagation Process in Delayed Fracture by FRASTA (Fracture-surface Topography Analysis) Method, Tetsu-to-Hagané, 83-8 (1997), 526-531, https://doi.org/10.2355/tetsutohagane1955.83.8_526. (in Japanese)
– reference: 2) H. Kitagawa, S. Toyohira and K. Ikeda: A New Method of Arresting Fatigue Crack Growth by Artificial Wedge, Proceeding of an International Conference on Fracture Mechanics in Engineering Application (1979), 281-293, https://doi.org/10.1007/978-94-009-9574-1_22.
– reference: 22) H. Shibata, K. Satoh, R. Fincato and S. Tsutsumi: Elasto-plastic Fatigue Crack Propagation Analysis Considering Crack Surface Corrosion Effect, Japanese Journal of JSCE, 80-15 (2024), https://doi.org/10.2208/jscejj.23-15030. (in Japanese)
– reference: 1) W. Elber: The Significance of Fatigue Crack Closure, ASTM STP, 486 (1971), 230-242, https://doi.org/10.1520/STP26680S.
– reference: 12) T. Kobayashi and D.A. Shockey: FRASTA: A New Way to Analyze Fracture Surfaces Part 1: Reconstructing Crack Histories, Advanced Materials & Processes, 140-5 (1991), 28-34.
– reference: 8) K. Endo, K. Komai and K. Ohnishi: Effects of Stress History and Corrosive Environment on Fatigue Crack Propagation, Journal of the Society of Materials Science, Japan, 17-173 (1968), 160-168, https://doi.org/10.2472/jsms.17.160. (in Japanese)
– reference: 19) S. Tsutsumi, H. Nagahama and R. Fincato: Fatigue Crack Initiation and Propagation Life of Steels Predicted by Local Elastoplasticity Response, Japanese Journal of JSCE A2 (Applied Mechanics), 75-2 (2019), I_445-I_453, https://doi.org/10.2208/jscejam.75.2_I_445. (in Japanese)
– reference: 21) K. Morita, M. Mouri, B. Ayang, R. Fincato and S. Tsutsumi: Evaluation of Fatigue Crack Propagation Behavior in Low Carbon Steel and Their Simulated HAZ and Fatigue Life Assessment of Non-load Carrying Welded Fillet Joint (Assessment of Fatigue Performance of Welded Joints Considering Cyclic Elasto-plasticity Response), Quartery Journal of the Japan Welding Society, 40-1 (2022), 27-35, https://doi.org/10.2207/qjjws.40.27. (in Japanese)
– reference: 5) I. Takahashi, M. Ushijima, C. Takahashi, S. Uematsu and N. Kotani: Automatic Restraint and Visual Detection of Fatigue Crack Growth by Applying an Alumina Paste, Quartery Journal of the Japan Welding Society, 22-4 (2004), 531-541, https://doi.org/10.2207/qjjws.22.531. (in Japanese)
– reference: 18) H. Shibata, K. Satoh, P. Luo and S. Tsutsumi: Quantitative Evaluation of Corrosion Products of Crack Face on Fatigue Crack Propagation Properties, 溶接構造シンポジウム2023講演論文集, 392-395 (2023) (in Japanese)
– reference: 23) T. Yonezawa, P. Luo and S. Tsutsumi: Evaluation of Fatigue Crack Propagation Behavior of Structural Steel with Different Thickness Using Digital Image Correlation Method, Journal of the Society of Materials Science, Japan, 72-12, (2023), 852-857, https://doi.org/10.2472/jsms.72.852. (in Japanese)
– reference: 14) T. Kobayashi: Fracture Process Reconstruction Method (FRASTA) and Its Hidden Potential, Journal of the Society of Materials Science, Japan, 65-11 (2016), 801-811, https://doi.org/10.2472/jsms.65.801. (in Japanese)
– reference: 7) P.S. Song, B.C. Sheu and H.H. Chou: Deposition of Plating Metals to Improve Crack Growth Life, International Journal of Fatigue, 23-3 (2001), 259-270, https://doi.org/10.1016/S0142-1123(00)00084-0.
– reference: 17) H. Shibata, P. Luo, K. Satoh, T. Yonezawa and S. Tsutsumi: Effect of Corrosion Products of Crack Face by Nitric Acid on Fatigue Crack Propagation Properties, Journal of the Society of Materials Science, Japan, 72-12 (2023), 873-878, https://doi.org/10.2472/jsms.72.873. (in Japanese)
– reference: 9) K. Endo, K. Komai and K. Ohnishi: Crack Propagation of Corrosion Fatigue under Service Loads, Journal of the Society of Materials Science, Japan, 18-184 (1969), 12-17, https://doi.org/10.2472/jsms.18.12. (in Japanese)
– reference: 16) M. Fujiwara and T. Hattori: Current Fractographic Research and Its Application V: The Fractographic Technique for Failure Analysis -FRASTA and Quantitative Evaluation of Applied Stress by Surface Roughness-, Journal of the Society of Materials Science, Japan, 47-10 (1998), 1088-1092, https://doi.org/10.2472/jsms.47.1088. (in Japanese)
– reference: 20) S. Tsutsumi, H. Nagahama, Y. Kiyokawa and R. Fincato: Fatigue Crack Propagation Life Assessment of Steels Predicted by Local Elastoplasticity Response – Surface Crack Propagation Property in Stress Concentration Field -, Japanese Journal of JSCE A2 (Applied Mechanics), 76-2 (2020), I_399-I_410, https://doi.org/10.2208/jscejam.76.2_I_399. (in Japanese)
– reference: 24) Y. Cao and K. Tanaka: Determination of the CTOA and J Integral by Fracture Surface Topography Analysis, International Journal of Fracture, 139 (2006), 253-266, https://doi.org/10.1007/s10704-006-0042-2.
SSID ssib005901878
ssib000937286
ssib044765221
ssj0033573
ssib031741155
ssib000961621
ssib023161316
ssib023168149
ssib002224207
ssib029852163
Score 2.4219017
SourceID jstage
SourceType Publisher
StartPage 337
Title 鋼材の硝酸腐食を活用する疲労寿命延伸技術に及ぼす応力比と亀裂長さの影響
URI https://www.jstage.jst.go.jp/article/qjjws/43/2/43_337/_article/-char/ja
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 溶接学会論文集, 2025, Vol.43(2), pp.337-348
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NaxNBFF9KvehB_MRvenBOITGZnZ2dOe6kG4pQTy30FjbZDZhD_UoRPEhT6CU9WLUVREspvRQEi1K02Jb-MWnS5r_wvbebZCseqpdlMvt7b9783m7mvWFm1rLuu1qGPBQacpNqkBUwYGcrkbKzUlTcQIhARjWcGph8JCemxcMZZ2ZklKdWLc01Krnqq7_uK_kfr0Id-BV3yf6DZwdKoQLK4F-4gofheiYfM18zZZgpMl8yPc50nvk2xIbM85nvMq-AlYhxmFHMV1hAjGaezXSJwJxpjuJGMGNQSgvmqUSP1glGxbcABmCHKQ_xUPBKzJSwoAvMjGMBlBjJfIFWYaMSwSqPraM9dt9CQ3pKeDeuwV4MGnVQrS4mbWmDeqAtsC0RV9TEQDMZCf3SIOj29TgpNhw0zxQIgzang3Lqvkdmg7U-8xzq2jjz-h3RHrVikAGkGmAuqTJMDaY26U6JiCEWTT5DUmCkTmOAQmOTW1xoLUONGqoCGTRvCBZotaYuavCnyBDVDtFI_lJmCAaT8zEGFCoSE-gCRR5XQIWfnuOJd4LT-5gCKhT1ivT4QCUxB70EgtFym0gl4o2XOQtvqYGGK5xhjT-Fk4uojgtbZBV3To2U8YFayT8CTw17dnxwTxJB2fHZqX8OzpzTepxn9frLFzlh5wZCp447T16mMsHKwi5zvAC23L-D2xHLdciJznGwGZfxTr720zN0Lk8diYifNJLpEBViVp4_vfdaDY-0g3QHAtxhyoS_VWE4RcG1goB3eGQdhN8CkqrBmCiEKyGlGSwzs20nXuXS5zjefINcPEgzAQFwHdLB_lJSim6nLlkXk7R0zIs7f9kaqQdXrAupw0qvWo97S_vdteV28-vxxlpvcfdkcbm3ud5eeNfd2Tte2Wo3P7YXlo4_fO-0djrbh523B529H0f7u93W_MnG-3bzS-dNq93cB1jn8HOn9am7vdJubh39mj_ZXOit_mw3V0Fz5-Bbb_3wmjVd8qeKE9nkQy3ZOoT7jWzNrdnVUIa2q_PVAsRAoiJqQS2sah6F-ZoQwHGkNJeACx0tdVR1da0QObKmXKcQ2Net0dkns9ENa0xGBcW1jIRwuIikDkLIUYIoxDlaKd3gpqVinspP49N4ymd-YG79v-ht6zy-lvHU6x1rtPF8LroLyUijco-evt8eUAAZ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%8B%BC%E6%9D%90%E3%81%AE%E7%A1%9D%E9%85%B8%E8%85%90%E9%A3%9F%E3%82%92%E6%B4%BB%E7%94%A8%E3%81%99%E3%82%8B%E7%96%B2%E5%8A%B4%E5%AF%BF%E5%91%BD%E5%BB%B6%E4%BC%B8%E6%8A%80%E8%A1%93%E3%81%AB%E5%8F%8A%E3%81%BC%E3%81%99%E5%BF%9C%E5%8A%9B%E6%AF%94%E3%81%A8%E4%BA%80%E8%A3%82%E9%95%B7%E3%81%95%E3%81%AE%E5%BD%B1%E9%9F%BF&rft.jtitle=%E6%BA%B6%E6%8E%A5%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E9%9B%86&rft.au=%E6%9F%B4%E7%94%B0+%E8%AA%89&rft.au=%E6%B2%B3%E9%87%8E+%E6%8B%B3%E4%B9%9F&rft.au=%E4%BD%90%E8%97%A4+%E5%95%93%E4%BB%8B&rft.au=%E5%A0%A4+%E6%88%90%E4%B8%80%E9%83%8E&rft.date=2025&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%BA%B6%E6%8E%A5%E5%AD%A6%E4%BC%9A&rft.issn=0288-4771&rft.eissn=2434-8252&rft.volume=43&rft.issue=2&rft.spage=337&rft.epage=348&rft_id=info:doi/10.2207%2Fqjjws.43.337&rft.externalDocID=article_qjjws_43_2_43_337_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0288-4771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0288-4771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0288-4771&client=summon