超伝導量子ビット用制御回路 現状と課題

Saved in:
Bibliographic Details
Published in低温工学 Vol. 59; no. 2; pp. 71 - 79
Main Authors 山下, 太郎, 竹内, 尚輝, 更田, 裕司, 山本, 剛
Format Journal Article
LanguageJapanese
Published 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) 20.03.2024
Subjects
Online AccessGet full text
ISSN0389-2441
1880-0408
DOI10.2221/jcsj.59.71

Cover

Author 山下, 太郎
山本, 剛
更田, 裕司
竹内, 尚輝
Author_xml – sequence: 1
  fullname: 山下, 太郎
  organization: 東北大学 大学院工学研究科
– sequence: 1
  fullname: 竹内, 尚輝
  organization: (国研)産業技術総合研究所 NEC-産総研量子活用テクノロジー連携研究ラボ
– sequence: 1
  fullname: 更田, 裕司
  organization: (国研)産業技術総合研究所 先端半導体研究センター
– sequence: 1
  fullname: 山本, 剛
  organization: 日本電気(株) セキュアシステムプラットフォーム研究所
BookMark eNo9jztLw1AcxS9SwVi7-CWcEu_7MThI8QUFF50v_-beaEKtknRxDmInLegmCm4uolNdxC8Tg_VbmKK4nAPnwOF3llFreDr0CK0SHFFKyXoWF1kkTKTIAgqI1jjEHOsWCjDTJqSckyXUKYq0jzE2kghJA7Q2m158vt_Xr1ffl9f186Qqb6qyrMrx1-1TPZ7WH4_13cPs7WUFLSYwKHznz9vocHvroLsb9vZ39rqbvTAjGpuQq4QSzaQWkAjJeAMhYtC-6eJEGcadAiwlx44b7xs8IQk4Z6RySZ-CY2208bubFSM48vYsT08gP7eQj9J44O38oxXG0rko8p_Hx5DbDNgPA1Rapw
ContentType Journal Article
Copyright 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)
Copyright_xml – notice: 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)
DOI 10.2221/jcsj.59.71
DeliveryMethod fulltext_linktorsrc
EISSN 1880-0408
EndPage 79
ExternalDocumentID article_jcsj_59_2_59_71_article_char_ja
GroupedDBID 123
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CS3
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j1809-47f2183685af56348805ca8e809cf7934d7a06640d49ee040561add967dfb2ad3
ISSN 0389-2441
IngestDate Wed Sep 03 06:31:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j1809-47f2183685af56348805ca8e809cf7934d7a06640d49ee040561add967dfb2ad3
OpenAccessLink https://www.jstage.jst.go.jp/article/jcsj/59/2/59_71/_article/-char/ja
PageCount 9
ParticipantIDs jstage_primary_article_jcsj_59_2_59_71_article_char_ja
PublicationCentury 2000
PublicationDate 2024/03/20
PublicationDateYYYYMMDD 2024-03-20
PublicationDate_xml – month: 03
  year: 2024
  text: 2024/03/20
  day: 20
PublicationDecade 2020
PublicationTitle 低温工学
PublicationTitleAlternate 低温工学
PublicationYear 2024
Publisher 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)
Publisher_xml – name: 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)
References 13)J. C. Bardin, D. Sank, O. Naaman, and E. Jeffrey: “Quantum computing: An introduction for microwave engineers,” IEEE Microw. Mag. 21 (2020) 24-44
43) K. K. Likharev and V. K. Semenov: “RSFQ logic/memory family: A new Josephson-junction technology for sub-terahertz-clockfrequency digital systems,” IEEE Trans. Appl. Supercond. 1 (1991) 3-28
30) N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa: “Onchip RSFQ microwave pulse generator using a multi-flux-quantum driver for controlling superconducting qubits,” Phys. C Supercond. its Appl. 470 (2010) 1550-1554
36) L. Howe et al.: “Digital control of a superconducting qubit using a Josephson pulse generator at 3 K,” PRX Quantum 3 (2022) 010350
40) K. T. R. Boothby: “Quantum flux parametron based structures (e.g., Muxes, Demuxes, Shift Registers), addressing lines and related methods,” US10528886B2 (2020
3) A. J. Daley et al.: “Practical quantum advantage in quantum simulation,” Nature 607 (2022) 667-676
11) 山本, 剛 : “ 超伝導回路を用いた量子計算機の研究を理解するための基礎知識 ,” 日本物理学会誌 75 (2020) 610-618
25) S. Chakraborty et al.: “A cryo-CMOS low-power semiautonomous transmon qubit state controller in 14-nm FinFET technology,” IEEEJ. Solid-State Circuits 57 (2022) 3258-3273
19) P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan: “A new universal and fault-tolerant quantum basis,” Inf. Process. Lett. 75 (2000) 101-107
8) A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland: “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86 (2012) 032324
22) J. C. Bardin et al.: “Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K,” IEEE J. Solid-State Circuits 54 (2019) 3043-3060
5) F. Arute et al.: “Quantum supremacy using a programmable superconducting processor,” Nature 574 (2019) 505-510
20) F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm, “Simple pulses for elimination of leakage in weakly nonlinear qubits,” Phys. Rev. Lett. 103 (2009) 110501
29) X. Li and Y. Zhang: “Flipping the CMOS switch,” IEEE Microw. Mag. 11 (2020) 86-96.
35) E. Leonard et al.: “Digital coherent control of a superconducting qubit,” Phys. Rev. Appl. 11 (2019) 014009
24) J. P. G. Van Dijk et al.: “A scalable cryo-CMOS controller for the wideband frequency-multiplexed control of spin qubits and transmons,” IEEE J. Solid-State Circuits 55 (2020) 2930-2946
38) M. W. Johnson et al.: “A scalable control system for a superconducting adiabatic quantum optimization processor,” Supercond. Sci. Technol. 23 (2010) 065004
46) N. Takeuchi, T. Yamae, C. L. Ayala, H. Suzuki, and N. Yoshikawa: “Adiabatic quantum-flux-parametron: A tutorial review,” IEICE Trans. Electron. E105.C (2022) 251-263
16) G. S. Paraoanu, “Microwave-induced coupling of superconducting qubits:” Phys. Rev. B 74 (2006) 140504
26) J. M. Hornibrook et al.: “Cryogenic control architecture for largescale quantum computing,” Phys. Rev. Appl. 3 (2015) 024010
42) N. Takeuchi, T. Yamae, W. Luo, F. Hirayama, T. Yamamoto, and N. Yoshikawa: “Scalable flux controllers using adiabatic superconductor logic for quantum processors,” Phys. Rev. Res. 5 (2023) 013145
6) Y. Kim et al.: “Evidence for the utility of quantum computing before fault tolerance,” Nature, 618 (2023) 500-505
23) B. Patra et al.: “A scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4 × 32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers,” in 2020 IEEE International Solid-State Circuits Conference (ISSCC) (2020) 304-306
4) T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien: “Quantum computers,” Nature 464 (2010) 45-53
17) R. Barends et al.: “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature 508 (2014) 500-503
7) IBM Newsroom: “IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two,” https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two (参照2023-10-24
14)J. Koch et al.: “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev. A 76 (2007) 042319
28) R. Acharya et al.: “Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer,” Nat. Electron. (2023) doi: 10.1038/s41928-023-01033-8.
47) O. Noroozian et al.: “High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array,” Appl. Phys. Lett. 103 (2013) 202602
44) S. Krinner et al.: “Engineering cryogenic setups for 100-qubit scale superconducting circuit systems,” EPJ Quantum Technol. 6 (2019) 2
45) N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa: “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26 (2013) 035010
1) P. W. Shor: “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26 (1997) 1484-1509
2) J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd: “Quantum machine learning,” Nature 549 (2017) 195-202
27) A. Potočnik et al.: “Millikelvin temperature cryo-CMOS multiplexer for scalable quantum device characterisation,” Quantum Sci. Technol. 7 (2022) 015004
39) P. I. Bunyk et al.: “Architectural considerations in the design of a superconducting quantum annealing processor,” IEEE Trans. Appl. Supercond. 24 (2014) 1700110
10) R. Acharya et al.: “Suppressing quantum errors by scaling a surface code logical qubit,” Nature 614 (2023) 676-681
37) M. A. Castellanos-Beltran et al.: “Coherence-limited digital control of a superconducting qubit using a Josephson pulse generator at 3 K,” Appl. Phys. Lett. 122 (2023) 010350
9) A. Cho: “No room for error,” Science 369 (2020) 130-133
33) O. Naaman, M. O. Abutaleb, C. Kirby, and M. Rennie: “On-chip Josephson junction microwave switch,” Appl. Phys. Lett. 108 (2016) 112601
21) J. C. Bardin et al.: “A 28nm bulk-CMOS 4-to-8GHz < 2mW cryogenic pulse modulator for scalable quantum computing,” in 2019 IEEE International Solid-State Circuits Conference (ISSCC) (2019) 456-458
18) J. P. G. van Dijk: “Designing the Electronic Interface for Qubit Control,” Doctoral thesis (2021) doi: 10.4233/uuid:7abc3f2a-ed28-42d4-8ae4-f86426777884
48) J. N. Ullom and D. A. Bennett: “Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy,” Supercond. Sci. Technol. 28 (2015) 084003
12) P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver: “A quantum engineer’s guide to superconducting qubits,” Appl. Phys. Rev. 6 (2019) 021318
31) H. Shen, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa: “Amplitude-controllable microwave pulse generator using singleflux-quantum pulse pairs for qubit control,” Supercond. Sci. Technol. 36 (2023) 095010
41) K. Boothby et al.: “Architectural considerations in the design of a third-generation superconducting quantum annealing processor,” arXiv:2108.02322 (2021
32) N. Takeuchi, T. Yamae, T. Yamashita, T. Yamamoto, and N. Yoshikawa: “Ultra-low-power, microwave-multiplexed qubit controller using adiabatic superconductor logic” arXiv:2310.06544 (2023
15) D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta: “Efficient Z gates for quantum computing,” Phys. Rev. A 96, no. 2,(2017) 022330
34) A. L. Graninger et al.: “Microwave switch architecture for superconducting integrated circuits using magnetic field-tunable Josephson junctions,” IEEE Trans. Appl. Supercond. 33 (2023) 1501605
References_xml – reference: 30) N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa: “Onchip RSFQ microwave pulse generator using a multi-flux-quantum driver for controlling superconducting qubits,” Phys. C Supercond. its Appl. 470 (2010) 1550-1554
– reference: 42) N. Takeuchi, T. Yamae, W. Luo, F. Hirayama, T. Yamamoto, and N. Yoshikawa: “Scalable flux controllers using adiabatic superconductor logic for quantum processors,” Phys. Rev. Res. 5 (2023) 013145
– reference: 19) P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan: “A new universal and fault-tolerant quantum basis,” Inf. Process. Lett. 75 (2000) 101-107
– reference: 23) B. Patra et al.: “A scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4 × 32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers,” in 2020 IEEE International Solid-State Circuits Conference (ISSCC) (2020) 304-306
– reference: 44) S. Krinner et al.: “Engineering cryogenic setups for 100-qubit scale superconducting circuit systems,” EPJ Quantum Technol. 6 (2019) 2
– reference: 33) O. Naaman, M. O. Abutaleb, C. Kirby, and M. Rennie: “On-chip Josephson junction microwave switch,” Appl. Phys. Lett. 108 (2016) 112601
– reference: 7) IBM Newsroom: “IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two,” https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two (参照2023-10-24)
– reference: 32) N. Takeuchi, T. Yamae, T. Yamashita, T. Yamamoto, and N. Yoshikawa: “Ultra-low-power, microwave-multiplexed qubit controller using adiabatic superconductor logic” arXiv:2310.06544 (2023)
– reference: 8) A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland: “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86 (2012) 032324
– reference: 24) J. P. G. Van Dijk et al.: “A scalable cryo-CMOS controller for the wideband frequency-multiplexed control of spin qubits and transmons,” IEEE J. Solid-State Circuits 55 (2020) 2930-2946
– reference: 29) X. Li and Y. Zhang: “Flipping the CMOS switch,” IEEE Microw. Mag. 11 (2020) 86-96.
– reference: 1) P. W. Shor: “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26 (1997) 1484-1509
– reference: 10) R. Acharya et al.: “Suppressing quantum errors by scaling a surface code logical qubit,” Nature 614 (2023) 676-681
– reference: 46) N. Takeuchi, T. Yamae, C. L. Ayala, H. Suzuki, and N. Yoshikawa: “Adiabatic quantum-flux-parametron: A tutorial review,” IEICE Trans. Electron. E105.C (2022) 251-263
– reference: 9) A. Cho: “No room for error,” Science 369 (2020) 130-133
– reference: 37) M. A. Castellanos-Beltran et al.: “Coherence-limited digital control of a superconducting qubit using a Josephson pulse generator at 3 K,” Appl. Phys. Lett. 122 (2023) 010350
– reference: 39) P. I. Bunyk et al.: “Architectural considerations in the design of a superconducting quantum annealing processor,” IEEE Trans. Appl. Supercond. 24 (2014) 1700110
– reference: 31) H. Shen, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa: “Amplitude-controllable microwave pulse generator using singleflux-quantum pulse pairs for qubit control,” Supercond. Sci. Technol. 36 (2023) 095010
– reference: 12) P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver: “A quantum engineer’s guide to superconducting qubits,” Appl. Phys. Rev. 6 (2019) 021318
– reference: 17) R. Barends et al.: “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature 508 (2014) 500-503
– reference: 5) F. Arute et al.: “Quantum supremacy using a programmable superconducting processor,” Nature 574 (2019) 505-510
– reference: 28) R. Acharya et al.: “Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer,” Nat. Electron. (2023) doi: 10.1038/s41928-023-01033-8.
– reference: 34) A. L. Graninger et al.: “Microwave switch architecture for superconducting integrated circuits using magnetic field-tunable Josephson junctions,” IEEE Trans. Appl. Supercond. 33 (2023) 1501605
– reference: 16) G. S. Paraoanu, “Microwave-induced coupling of superconducting qubits:” Phys. Rev. B 74 (2006) 140504
– reference: 11) 山本, 剛 : “ 超伝導回路を用いた量子計算機の研究を理解するための基礎知識 ,” 日本物理学会誌 75 (2020) 610-618
– reference: 47) O. Noroozian et al.: “High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array,” Appl. Phys. Lett. 103 (2013) 202602
– reference: 3) A. J. Daley et al.: “Practical quantum advantage in quantum simulation,” Nature 607 (2022) 667-676
– reference: 26) J. M. Hornibrook et al.: “Cryogenic control architecture for largescale quantum computing,” Phys. Rev. Appl. 3 (2015) 024010
– reference: 40) K. T. R. Boothby: “Quantum flux parametron based structures (e.g., Muxes, Demuxes, Shift Registers), addressing lines and related methods,” US10528886B2 (2020)
– reference: 38) M. W. Johnson et al.: “A scalable control system for a superconducting adiabatic quantum optimization processor,” Supercond. Sci. Technol. 23 (2010) 065004
– reference: 45) N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa: “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26 (2013) 035010
– reference: 6) Y. Kim et al.: “Evidence for the utility of quantum computing before fault tolerance,” Nature, 618 (2023) 500-505
– reference: 27) A. Potočnik et al.: “Millikelvin temperature cryo-CMOS multiplexer for scalable quantum device characterisation,” Quantum Sci. Technol. 7 (2022) 015004
– reference: 4) T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien: “Quantum computers,” Nature 464 (2010) 45-53
– reference: 13)J. C. Bardin, D. Sank, O. Naaman, and E. Jeffrey: “Quantum computing: An introduction for microwave engineers,” IEEE Microw. Mag. 21 (2020) 24-44
– reference: 2) J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd: “Quantum machine learning,” Nature 549 (2017) 195-202
– reference: 15) D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta: “Efficient Z gates for quantum computing,” Phys. Rev. A 96, no. 2,(2017) 022330
– reference: 18) J. P. G. van Dijk: “Designing the Electronic Interface for Qubit Control,” Doctoral thesis (2021) doi: 10.4233/uuid:7abc3f2a-ed28-42d4-8ae4-f86426777884
– reference: 36) L. Howe et al.: “Digital control of a superconducting qubit using a Josephson pulse generator at 3 K,” PRX Quantum 3 (2022) 010350
– reference: 48) J. N. Ullom and D. A. Bennett: “Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy,” Supercond. Sci. Technol. 28 (2015) 084003
– reference: 41) K. Boothby et al.: “Architectural considerations in the design of a third-generation superconducting quantum annealing processor,” arXiv:2108.02322 (2021)
– reference: 20) F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm, “Simple pulses for elimination of leakage in weakly nonlinear qubits,” Phys. Rev. Lett. 103 (2009) 110501
– reference: 35) E. Leonard et al.: “Digital coherent control of a superconducting qubit,” Phys. Rev. Appl. 11 (2019) 014009
– reference: 43) K. K. Likharev and V. K. Semenov: “RSFQ logic/memory family: A new Josephson-junction technology for sub-terahertz-clockfrequency digital systems,” IEEE Trans. Appl. Supercond. 1 (1991) 3-28
– reference: 21) J. C. Bardin et al.: “A 28nm bulk-CMOS 4-to-8GHz < 2mW cryogenic pulse modulator for scalable quantum computing,” in 2019 IEEE International Solid-State Circuits Conference (ISSCC) (2019) 456-458
– reference: 22) J. C. Bardin et al.: “Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K,” IEEE J. Solid-State Circuits 54 (2019) 3043-3060
– reference: 14)J. Koch et al.: “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev. A 76 (2007) 042319
– reference: 25) S. Chakraborty et al.: “A cryo-CMOS low-power semiautonomous transmon qubit state controller in 14-nm FinFET technology,” IEEEJ. Solid-State Circuits 57 (2022) 3258-3273
SSID ssib000961562
ssj0041516
ssib005901851
ssib002484407
Score 2.3480132
SourceID jstage
SourceType Publisher
StartPage 71
SubjectTerms AQFP
cryo-CMOS
low-power
multiplexing
SFQ
Subtitle 現状と課題
Title 超伝導量子ビット用制御回路
URI https://www.jstage.jst.go.jp/article/jcsj/59/2/59_71/_article/-char/ja
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 低温工学, 2024/03/20, Vol.59(2), pp.71-79
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR09i9RANJxnYyOKit9c4cPiyLpJZjJvypndHIeiINzBdSHZJMUWp5x7je0iXqWCdqJgZyNanY34Z9bF81fom5lkNytXrIcQwjB58z43ee9l37x43q1BhFnI4syP80L4DMvMz_Oo8rkMi5IeyqyyTVzvP4g3t9ndHb6zcup3q2ppf5R3Bk-P3VdyEqvSHNnV7JL9B8vOkNIEjcm-dCYL03kpG0OCoGNADgkD3QPZh4SD7gImkEigPB83zIzqg-xCEgFGIKN6gLMBQiJAMlBogNHiNHgSUIEZSA0ysbQEqIU6QEu3b8nFoBGUtAsJjNd01ezNn70SmMMsQkBtzGvBiLSyDBMzyRye0GjQFiVaKWt4ElAqy48ReQ4fG041q6UhKAtPXJHUlh_ShsZj-KGFPVC9Bj9KQtR-HRIyUw8Wdmc_YAvFzRJDSwMqyy0zOnMKI5pGJY4yzSs61pdRV20UrVvGlVYw3TLuDNjZXZlEwcpBuMT6f2SG5OwbbTaEmjdH9WY4W7zmeop1Sufb6FHt0zMb286Py9ZNHrY8mQhaMZH73s_f3pZCS-ttB0-GHS47zYqF7uX1vZEaoJTLNDQnEaTNvNlbmA4pwTkdCmHrLO49bOUHkgLuVj_LkCFj3cWN0_ZvbRd6UTAauOKEWnrXj9jweWfOJcWaQ8q8mqpNG0hunfPO1hngmnKsnfdWhtkF7_bR4bMf395Nv7z49fzl9NOryfj1ZDyejA9-vvk4PTicfv8wffv-6Ovni972RrLV2_Trb5j4Q9MZz2eiMklIjDyreBwZd8kHGZZ0bVCRb2SFyCjqZ92CybIk61A-QyGHjEVR5WFWRJe81d1Hu-Vlby2gTK5g5IApK2KCx5JhnlNCgQNWBphVV7zYyZU-do1q0iWVf_WkC695Z-a34HVvdbS3X96gGH2U37R2_AMLjaoz
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%B6%85%E4%BC%9D%E5%B0%8E%E9%87%8F%E5%AD%90%E3%83%93%E3%83%83%E3%83%88%E7%94%A8%E5%88%B6%E5%BE%A1%E5%9B%9E%E8%B7%AF&rft.jtitle=%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6&rft.au=%E5%B1%B1%E4%B8%8B%2C+%E5%A4%AA%E9%83%8E&rft.au=%E7%AB%B9%E5%86%85%2C+%E5%B0%9A%E8%BC%9D&rft.au=%E6%9B%B4%E7%94%B0%2C+%E8%A3%95%E5%8F%B8&rft.au=%E5%B1%B1%E6%9C%AC%2C+%E5%89%9B&rft.date=2024-03-20&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6%E3%83%BB%E8%B6%85%E9%9B%BB%E5%B0%8E%E5%AD%A6%E4%BC%9A+%28%E6%97%A7+%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6%E5%8D%94%E4%BC%9A%29&rft.issn=0389-2441&rft.eissn=1880-0408&rft.volume=59&rft.issue=2&rft.spage=71&rft.epage=79&rft_id=info:doi/10.2221%2Fjcsj.59.71&rft.externalDocID=article_jcsj_59_2_59_71_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-2441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-2441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-2441&client=summon