超伝導量子ビット用制御回路 現状と課題
Saved in:
Published in | 低温工学 Vol. 59; no. 2; pp. 71 - 79 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Japanese |
Published |
公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)
20.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0389-2441 1880-0408 |
DOI | 10.2221/jcsj.59.71 |
Cover
Author | 山下, 太郎 山本, 剛 更田, 裕司 竹内, 尚輝 |
---|---|
Author_xml | – sequence: 1 fullname: 山下, 太郎 organization: 東北大学 大学院工学研究科 – sequence: 1 fullname: 竹内, 尚輝 organization: (国研)産業技術総合研究所 NEC-産総研量子活用テクノロジー連携研究ラボ – sequence: 1 fullname: 更田, 裕司 organization: (国研)産業技術総合研究所 先端半導体研究センター – sequence: 1 fullname: 山本, 剛 organization: 日本電気(株) セキュアシステムプラットフォーム研究所 |
BookMark | eNo9jztLw1AcxS9SwVi7-CWcEu_7MThI8QUFF50v_-beaEKtknRxDmInLegmCm4uolNdxC8Tg_VbmKK4nAPnwOF3llFreDr0CK0SHFFKyXoWF1kkTKTIAgqI1jjEHOsWCjDTJqSckyXUKYq0jzE2kghJA7Q2m158vt_Xr1ffl9f186Qqb6qyrMrx1-1TPZ7WH4_13cPs7WUFLSYwKHznz9vocHvroLsb9vZ39rqbvTAjGpuQq4QSzaQWkAjJeAMhYtC-6eJEGcadAiwlx44b7xs8IQk4Z6RySZ-CY2208bubFSM48vYsT08gP7eQj9J44O38oxXG0rko8p_Hx5DbDNgPA1Rapw |
ContentType | Journal Article |
Copyright | 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) |
Copyright_xml | – notice: 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) |
DOI | 10.2221/jcsj.59.71 |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1880-0408 |
EndPage | 79 |
ExternalDocumentID | article_jcsj_59_2_59_71_article_char_ja |
GroupedDBID | 123 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CS3 JSF KQ8 OK1 RJT |
ID | FETCH-LOGICAL-j1809-47f2183685af56348805ca8e809cf7934d7a06640d49ee040561add967dfb2ad3 |
ISSN | 0389-2441 |
IngestDate | Wed Sep 03 06:31:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j1809-47f2183685af56348805ca8e809cf7934d7a06640d49ee040561add967dfb2ad3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jcsj/59/2/59_71/_article/-char/ja |
PageCount | 9 |
ParticipantIDs | jstage_primary_article_jcsj_59_2_59_71_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2024/03/20 |
PublicationDateYYYYMMDD | 2024-03-20 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024/03/20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | 低温工学 |
PublicationTitleAlternate | 低温工学 |
PublicationYear | 2024 |
Publisher | 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) |
Publisher_xml | – name: 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) |
References | 13)J. C. Bardin, D. Sank, O. Naaman, and E. Jeffrey: “Quantum computing: An introduction for microwave engineers,” IEEE Microw. Mag. 21 (2020) 24-44 43) K. K. Likharev and V. K. Semenov: “RSFQ logic/memory family: A new Josephson-junction technology for sub-terahertz-clockfrequency digital systems,” IEEE Trans. Appl. Supercond. 1 (1991) 3-28 30) N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa: “Onchip RSFQ microwave pulse generator using a multi-flux-quantum driver for controlling superconducting qubits,” Phys. C Supercond. its Appl. 470 (2010) 1550-1554 36) L. Howe et al.: “Digital control of a superconducting qubit using a Josephson pulse generator at 3 K,” PRX Quantum 3 (2022) 010350 40) K. T. R. Boothby: “Quantum flux parametron based structures (e.g., Muxes, Demuxes, Shift Registers), addressing lines and related methods,” US10528886B2 (2020 3) A. J. Daley et al.: “Practical quantum advantage in quantum simulation,” Nature 607 (2022) 667-676 11) 山本, 剛 : “ 超伝導回路を用いた量子計算機の研究を理解するための基礎知識 ,” 日本物理学会誌 75 (2020) 610-618 25) S. Chakraborty et al.: “A cryo-CMOS low-power semiautonomous transmon qubit state controller in 14-nm FinFET technology,” IEEEJ. Solid-State Circuits 57 (2022) 3258-3273 19) P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan: “A new universal and fault-tolerant quantum basis,” Inf. Process. Lett. 75 (2000) 101-107 8) A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland: “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86 (2012) 032324 22) J. C. Bardin et al.: “Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K,” IEEE J. Solid-State Circuits 54 (2019) 3043-3060 5) F. Arute et al.: “Quantum supremacy using a programmable superconducting processor,” Nature 574 (2019) 505-510 20) F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm, “Simple pulses for elimination of leakage in weakly nonlinear qubits,” Phys. Rev. Lett. 103 (2009) 110501 29) X. Li and Y. Zhang: “Flipping the CMOS switch,” IEEE Microw. Mag. 11 (2020) 86-96. 35) E. Leonard et al.: “Digital coherent control of a superconducting qubit,” Phys. Rev. Appl. 11 (2019) 014009 24) J. P. G. Van Dijk et al.: “A scalable cryo-CMOS controller for the wideband frequency-multiplexed control of spin qubits and transmons,” IEEE J. Solid-State Circuits 55 (2020) 2930-2946 38) M. W. Johnson et al.: “A scalable control system for a superconducting adiabatic quantum optimization processor,” Supercond. Sci. Technol. 23 (2010) 065004 46) N. Takeuchi, T. Yamae, C. L. Ayala, H. Suzuki, and N. Yoshikawa: “Adiabatic quantum-flux-parametron: A tutorial review,” IEICE Trans. Electron. E105.C (2022) 251-263 16) G. S. Paraoanu, “Microwave-induced coupling of superconducting qubits:” Phys. Rev. B 74 (2006) 140504 26) J. M. Hornibrook et al.: “Cryogenic control architecture for largescale quantum computing,” Phys. Rev. Appl. 3 (2015) 024010 42) N. Takeuchi, T. Yamae, W. Luo, F. Hirayama, T. Yamamoto, and N. Yoshikawa: “Scalable flux controllers using adiabatic superconductor logic for quantum processors,” Phys. Rev. Res. 5 (2023) 013145 6) Y. Kim et al.: “Evidence for the utility of quantum computing before fault tolerance,” Nature, 618 (2023) 500-505 23) B. Patra et al.: “A scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4 × 32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers,” in 2020 IEEE International Solid-State Circuits Conference (ISSCC) (2020) 304-306 4) T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien: “Quantum computers,” Nature 464 (2010) 45-53 17) R. Barends et al.: “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature 508 (2014) 500-503 7) IBM Newsroom: “IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two,” https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two (参照2023-10-24 14)J. Koch et al.: “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev. A 76 (2007) 042319 28) R. Acharya et al.: “Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer,” Nat. Electron. (2023) doi: 10.1038/s41928-023-01033-8. 47) O. Noroozian et al.: “High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array,” Appl. Phys. Lett. 103 (2013) 202602 44) S. Krinner et al.: “Engineering cryogenic setups for 100-qubit scale superconducting circuit systems,” EPJ Quantum Technol. 6 (2019) 2 45) N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa: “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26 (2013) 035010 1) P. W. Shor: “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26 (1997) 1484-1509 2) J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd: “Quantum machine learning,” Nature 549 (2017) 195-202 27) A. Potočnik et al.: “Millikelvin temperature cryo-CMOS multiplexer for scalable quantum device characterisation,” Quantum Sci. Technol. 7 (2022) 015004 39) P. I. Bunyk et al.: “Architectural considerations in the design of a superconducting quantum annealing processor,” IEEE Trans. Appl. Supercond. 24 (2014) 1700110 10) R. Acharya et al.: “Suppressing quantum errors by scaling a surface code logical qubit,” Nature 614 (2023) 676-681 37) M. A. Castellanos-Beltran et al.: “Coherence-limited digital control of a superconducting qubit using a Josephson pulse generator at 3 K,” Appl. Phys. Lett. 122 (2023) 010350 9) A. Cho: “No room for error,” Science 369 (2020) 130-133 33) O. Naaman, M. O. Abutaleb, C. Kirby, and M. Rennie: “On-chip Josephson junction microwave switch,” Appl. Phys. Lett. 108 (2016) 112601 21) J. C. Bardin et al.: “A 28nm bulk-CMOS 4-to-8GHz < 2mW cryogenic pulse modulator for scalable quantum computing,” in 2019 IEEE International Solid-State Circuits Conference (ISSCC) (2019) 456-458 18) J. P. G. van Dijk: “Designing the Electronic Interface for Qubit Control,” Doctoral thesis (2021) doi: 10.4233/uuid:7abc3f2a-ed28-42d4-8ae4-f86426777884 48) J. N. Ullom and D. A. Bennett: “Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy,” Supercond. Sci. Technol. 28 (2015) 084003 12) P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver: “A quantum engineer’s guide to superconducting qubits,” Appl. Phys. Rev. 6 (2019) 021318 31) H. Shen, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa: “Amplitude-controllable microwave pulse generator using singleflux-quantum pulse pairs for qubit control,” Supercond. Sci. Technol. 36 (2023) 095010 41) K. Boothby et al.: “Architectural considerations in the design of a third-generation superconducting quantum annealing processor,” arXiv:2108.02322 (2021 32) N. Takeuchi, T. Yamae, T. Yamashita, T. Yamamoto, and N. Yoshikawa: “Ultra-low-power, microwave-multiplexed qubit controller using adiabatic superconductor logic” arXiv:2310.06544 (2023 15) D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta: “Efficient Z gates for quantum computing,” Phys. Rev. A 96, no. 2,(2017) 022330 34) A. L. Graninger et al.: “Microwave switch architecture for superconducting integrated circuits using magnetic field-tunable Josephson junctions,” IEEE Trans. Appl. Supercond. 33 (2023) 1501605 |
References_xml | – reference: 30) N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa: “Onchip RSFQ microwave pulse generator using a multi-flux-quantum driver for controlling superconducting qubits,” Phys. C Supercond. its Appl. 470 (2010) 1550-1554 – reference: 42) N. Takeuchi, T. Yamae, W. Luo, F. Hirayama, T. Yamamoto, and N. Yoshikawa: “Scalable flux controllers using adiabatic superconductor logic for quantum processors,” Phys. Rev. Res. 5 (2023) 013145 – reference: 19) P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan: “A new universal and fault-tolerant quantum basis,” Inf. Process. Lett. 75 (2000) 101-107 – reference: 23) B. Patra et al.: “A scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4 × 32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers,” in 2020 IEEE International Solid-State Circuits Conference (ISSCC) (2020) 304-306 – reference: 44) S. Krinner et al.: “Engineering cryogenic setups for 100-qubit scale superconducting circuit systems,” EPJ Quantum Technol. 6 (2019) 2 – reference: 33) O. Naaman, M. O. Abutaleb, C. Kirby, and M. Rennie: “On-chip Josephson junction microwave switch,” Appl. Phys. Lett. 108 (2016) 112601 – reference: 7) IBM Newsroom: “IBM Unveils 400 Qubit-Plus Quantum Processor and Next-Generation IBM Quantum System Two,” https://newsroom.ibm.com/2022-11-09-IBM-Unveils-400-Qubit-Plus-Quantum-Processor-and-Next-Generation-IBM-Quantum-System-Two (参照2023-10-24) – reference: 32) N. Takeuchi, T. Yamae, T. Yamashita, T. Yamamoto, and N. Yoshikawa: “Ultra-low-power, microwave-multiplexed qubit controller using adiabatic superconductor logic” arXiv:2310.06544 (2023) – reference: 8) A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland: “Surface codes: Towards practical large-scale quantum computation,” Phys. Rev. A 86 (2012) 032324 – reference: 24) J. P. G. Van Dijk et al.: “A scalable cryo-CMOS controller for the wideband frequency-multiplexed control of spin qubits and transmons,” IEEE J. Solid-State Circuits 55 (2020) 2930-2946 – reference: 29) X. Li and Y. Zhang: “Flipping the CMOS switch,” IEEE Microw. Mag. 11 (2020) 86-96. – reference: 1) P. W. Shor: “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26 (1997) 1484-1509 – reference: 10) R. Acharya et al.: “Suppressing quantum errors by scaling a surface code logical qubit,” Nature 614 (2023) 676-681 – reference: 46) N. Takeuchi, T. Yamae, C. L. Ayala, H. Suzuki, and N. Yoshikawa: “Adiabatic quantum-flux-parametron: A tutorial review,” IEICE Trans. Electron. E105.C (2022) 251-263 – reference: 9) A. Cho: “No room for error,” Science 369 (2020) 130-133 – reference: 37) M. A. Castellanos-Beltran et al.: “Coherence-limited digital control of a superconducting qubit using a Josephson pulse generator at 3 K,” Appl. Phys. Lett. 122 (2023) 010350 – reference: 39) P. I. Bunyk et al.: “Architectural considerations in the design of a superconducting quantum annealing processor,” IEEE Trans. Appl. Supercond. 24 (2014) 1700110 – reference: 31) H. Shen, N. Takeuchi, Y. Yamanashi, and N. Yoshikawa: “Amplitude-controllable microwave pulse generator using singleflux-quantum pulse pairs for qubit control,” Supercond. Sci. Technol. 36 (2023) 095010 – reference: 12) P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver: “A quantum engineer’s guide to superconducting qubits,” Appl. Phys. Rev. 6 (2019) 021318 – reference: 17) R. Barends et al.: “Superconducting quantum circuits at the surface code threshold for fault tolerance,” Nature 508 (2014) 500-503 – reference: 5) F. Arute et al.: “Quantum supremacy using a programmable superconducting processor,” Nature 574 (2019) 505-510 – reference: 28) R. Acharya et al.: “Multiplexed superconducting qubit control at millikelvin temperatures with a low-power cryo-CMOS multiplexer,” Nat. Electron. (2023) doi: 10.1038/s41928-023-01033-8. – reference: 34) A. L. Graninger et al.: “Microwave switch architecture for superconducting integrated circuits using magnetic field-tunable Josephson junctions,” IEEE Trans. Appl. Supercond. 33 (2023) 1501605 – reference: 16) G. S. Paraoanu, “Microwave-induced coupling of superconducting qubits:” Phys. Rev. B 74 (2006) 140504 – reference: 11) 山本, 剛 : “ 超伝導回路を用いた量子計算機の研究を理解するための基礎知識 ,” 日本物理学会誌 75 (2020) 610-618 – reference: 47) O. Noroozian et al.: “High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array,” Appl. Phys. Lett. 103 (2013) 202602 – reference: 3) A. J. Daley et al.: “Practical quantum advantage in quantum simulation,” Nature 607 (2022) 667-676 – reference: 26) J. M. Hornibrook et al.: “Cryogenic control architecture for largescale quantum computing,” Phys. Rev. Appl. 3 (2015) 024010 – reference: 40) K. T. R. Boothby: “Quantum flux parametron based structures (e.g., Muxes, Demuxes, Shift Registers), addressing lines and related methods,” US10528886B2 (2020) – reference: 38) M. W. Johnson et al.: “A scalable control system for a superconducting adiabatic quantum optimization processor,” Supercond. Sci. Technol. 23 (2010) 065004 – reference: 45) N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa: “An adiabatic quantum flux parametron as an ultra-low-power logic device,” Supercond. Sci. Technol. 26 (2013) 035010 – reference: 6) Y. Kim et al.: “Evidence for the utility of quantum computing before fault tolerance,” Nature, 618 (2023) 500-505 – reference: 27) A. Potočnik et al.: “Millikelvin temperature cryo-CMOS multiplexer for scalable quantum device characterisation,” Quantum Sci. Technol. 7 (2022) 015004 – reference: 4) T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien: “Quantum computers,” Nature 464 (2010) 45-53 – reference: 13)J. C. Bardin, D. Sank, O. Naaman, and E. Jeffrey: “Quantum computing: An introduction for microwave engineers,” IEEE Microw. Mag. 21 (2020) 24-44 – reference: 2) J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd: “Quantum machine learning,” Nature 549 (2017) 195-202 – reference: 15) D. C. McKay, C. J. Wood, S. Sheldon, J. M. Chow, and J. M. Gambetta: “Efficient Z gates for quantum computing,” Phys. Rev. A 96, no. 2,(2017) 022330 – reference: 18) J. P. G. van Dijk: “Designing the Electronic Interface for Qubit Control,” Doctoral thesis (2021) doi: 10.4233/uuid:7abc3f2a-ed28-42d4-8ae4-f86426777884 – reference: 36) L. Howe et al.: “Digital control of a superconducting qubit using a Josephson pulse generator at 3 K,” PRX Quantum 3 (2022) 010350 – reference: 48) J. N. Ullom and D. A. Bennett: “Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy,” Supercond. Sci. Technol. 28 (2015) 084003 – reference: 41) K. Boothby et al.: “Architectural considerations in the design of a third-generation superconducting quantum annealing processor,” arXiv:2108.02322 (2021) – reference: 20) F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm, “Simple pulses for elimination of leakage in weakly nonlinear qubits,” Phys. Rev. Lett. 103 (2009) 110501 – reference: 35) E. Leonard et al.: “Digital coherent control of a superconducting qubit,” Phys. Rev. Appl. 11 (2019) 014009 – reference: 43) K. K. Likharev and V. K. Semenov: “RSFQ logic/memory family: A new Josephson-junction technology for sub-terahertz-clockfrequency digital systems,” IEEE Trans. Appl. Supercond. 1 (1991) 3-28 – reference: 21) J. C. Bardin et al.: “A 28nm bulk-CMOS 4-to-8GHz < 2mW cryogenic pulse modulator for scalable quantum computing,” in 2019 IEEE International Solid-State Circuits Conference (ISSCC) (2019) 456-458 – reference: 22) J. C. Bardin et al.: “Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K,” IEEE J. Solid-State Circuits 54 (2019) 3043-3060 – reference: 14)J. Koch et al.: “Charge-insensitive qubit design derived from the Cooper pair box,” Phys. Rev. A 76 (2007) 042319 – reference: 25) S. Chakraborty et al.: “A cryo-CMOS low-power semiautonomous transmon qubit state controller in 14-nm FinFET technology,” IEEEJ. Solid-State Circuits 57 (2022) 3258-3273 |
SSID | ssib000961562 ssj0041516 ssib005901851 ssib002484407 |
Score | 2.3480132 |
SourceID | jstage |
SourceType | Publisher |
StartPage | 71 |
SubjectTerms | AQFP cryo-CMOS low-power multiplexing SFQ |
Subtitle | 現状と課題 |
Title | 超伝導量子ビット用制御回路 |
URI | https://www.jstage.jst.go.jp/article/jcsj/59/2/59_71/_article/-char/ja |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 低温工学, 2024/03/20, Vol.59(2), pp.71-79 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR09i9RANJxnYyOKit9c4cPiyLpJZjJvypndHIeiINzBdSHZJMUWp5x7je0iXqWCdqJgZyNanY34Z9bF81fom5lkNytXrIcQwjB58z43ee9l37x43q1BhFnI4syP80L4DMvMz_Oo8rkMi5IeyqyyTVzvP4g3t9ndHb6zcup3q2ppf5R3Bk-P3VdyEqvSHNnV7JL9B8vOkNIEjcm-dCYL03kpG0OCoGNADgkD3QPZh4SD7gImkEigPB83zIzqg-xCEgFGIKN6gLMBQiJAMlBogNHiNHgSUIEZSA0ysbQEqIU6QEu3b8nFoBGUtAsJjNd01ezNn70SmMMsQkBtzGvBiLSyDBMzyRye0GjQFiVaKWt4ElAqy48ReQ4fG041q6UhKAtPXJHUlh_ShsZj-KGFPVC9Bj9KQtR-HRIyUw8Wdmc_YAvFzRJDSwMqyy0zOnMKI5pGJY4yzSs61pdRV20UrVvGlVYw3TLuDNjZXZlEwcpBuMT6f2SG5OwbbTaEmjdH9WY4W7zmeop1Sufb6FHt0zMb286Py9ZNHrY8mQhaMZH73s_f3pZCS-ttB0-GHS47zYqF7uX1vZEaoJTLNDQnEaTNvNlbmA4pwTkdCmHrLO49bOUHkgLuVj_LkCFj3cWN0_ZvbRd6UTAauOKEWnrXj9jweWfOJcWaQ8q8mqpNG0hunfPO1hngmnKsnfdWhtkF7_bR4bMf395Nv7z49fzl9NOryfj1ZDyejA9-vvk4PTicfv8wffv-6Ovni972RrLV2_Trb5j4Q9MZz2eiMklIjDyreBwZd8kHGZZ0bVCRb2SFyCjqZ92CybIk61A-QyGHjEVR5WFWRJe81d1Hu-Vlby2gTK5g5IApK2KCx5JhnlNCgQNWBphVV7zYyZU-do1q0iWVf_WkC695Z-a34HVvdbS3X96gGH2U37R2_AMLjaoz |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%B6%85%E4%BC%9D%E5%B0%8E%E9%87%8F%E5%AD%90%E3%83%93%E3%83%83%E3%83%88%E7%94%A8%E5%88%B6%E5%BE%A1%E5%9B%9E%E8%B7%AF&rft.jtitle=%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6&rft.au=%E5%B1%B1%E4%B8%8B%2C+%E5%A4%AA%E9%83%8E&rft.au=%E7%AB%B9%E5%86%85%2C+%E5%B0%9A%E8%BC%9D&rft.au=%E6%9B%B4%E7%94%B0%2C+%E8%A3%95%E5%8F%B8&rft.au=%E5%B1%B1%E6%9C%AC%2C+%E5%89%9B&rft.date=2024-03-20&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6%E3%83%BB%E8%B6%85%E9%9B%BB%E5%B0%8E%E5%AD%A6%E4%BC%9A+%28%E6%97%A7+%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6%E5%8D%94%E4%BC%9A%29&rft.issn=0389-2441&rft.eissn=1880-0408&rft.volume=59&rft.issue=2&rft.spage=71&rft.epage=79&rft_id=info:doi/10.2221%2Fjcsj.59.71&rft.externalDocID=article_jcsj_59_2_59_71_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-2441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-2441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-2441&client=summon |