Mechanical Behavior Dependence on Geotextiles Interweave Configuration Used in Coastal Restoration

Geotubes are the most used technology for coastal recovery due to erosion and, because of the lower price and easier installation, geotextile tube systems can be good alternatives for hydraulic and coastal structures. Geotubes can suffer damage due to cuts in fibers and other components, formation o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Experimental Mechanics Vol. 9; p. 24-0017
Main Authors WAKAYAMA, Shuichi, CANTO-PINTO, Jorge Carlos, PEREZ-PACHECO, Emilio, RIOS-SOBERANIS, Carlos Rolando, SAKAI, Takenobu
Format Journal Article
LanguageEnglish
Japanese
Published The Japanese Society for Experimental Mechanics 2024
Subjects
Online AccessGet full text
ISSN2189-4752
2424-175X
DOI10.11395/aem.24-0017

Cover

Loading…
Abstract Geotubes are the most used technology for coastal recovery due to erosion and, because of the lower price and easier installation, geotextile tube systems can be good alternatives for hydraulic and coastal structures. Geotubes can suffer damage due to cuts in fibers and other components, formation of holes, abrasion originating a reduction in mechanical resistance. On the other hand, when filled in-situ by hydraulic pumping is assumed that tensile stresses act directionally due to the hydraulic pressure and the tensile force in the geosynthetic tube. Therefore, it is important to understand the mechanical behavior as well as to identify the stages during the damage process. A mechanical vital role is sustained by the textile architecture and configuration since stresses will be transferred along the textiles. This paper exhibits the full mechanical characterization of two geotextiles made of polyethilenethereftalate (PET) and polypropylene (PP) respectively, both with different interweave architecture. Results found that textile geometry is crucial for bearing stresses and depend on the acting direction. Acoustic emission technique was employed to identify the mechanism of failure that supported the mechanical characterization findings.
AbstractList Geotubes are the most used technology for coastal recovery due to erosion and, because of the lower price and easier installation, geotextile tube systems can be good alternatives for hydraulic and coastal structures. Geotubes can suffer damage due to cuts in fibers and other components, formation of holes, abrasion originating a reduction in mechanical resistance. On the other hand, when filled in-situ by hydraulic pumping is assumed that tensile stresses act directionally due to the hydraulic pressure and the tensile force in the geosynthetic tube. Therefore, it is important to understand the mechanical behavior as well as to identify the stages during the damage process. A mechanical vital role is sustained by the textile architecture and configuration since stresses will be transferred along the textiles. This paper exhibits the full mechanical characterization of two geotextiles made of polyethilenethereftalate (PET) and polypropylene (PP) respectively, both with different interweave architecture. Results found that textile geometry is crucial for bearing stresses and depend on the acting direction. Acoustic emission technique was employed to identify the mechanism of failure that supported the mechanical characterization findings.
Author WAKAYAMA, Shuichi
PEREZ-PACHECO, Emilio
RIOS-SOBERANIS, Carlos Rolando
SAKAI, Takenobu
CANTO-PINTO, Jorge Carlos
Author_xml – sequence: 1
  fullname: WAKAYAMA, Shuichi
  organization: Department of Mechanical Engineering, Tokyo Metropolitan University
– sequence: 1
  fullname: CANTO-PINTO, Jorge Carlos
  organization: Tecnológico Nacional de México. Campus Instituto Tecnológico Superior de Calkiní. Cuerpo Académico Bioprocesos
– sequence: 1
  fullname: PEREZ-PACHECO, Emilio
  organization: Universidad Modelo, Centro de Investigaciones Silvio Zavala
– sequence: 1
  fullname: RIOS-SOBERANIS, Carlos Rolando
  organization: Centro de Investigación Científica de Yucatán, A.C
– sequence: 1
  fullname: SAKAI, Takenobu
  organization: Graduate School of Science and Engineering, Saitama University
BookMark eNo9kN1KAzEQhYNUsGrvfIC8wNb87G6SK9GqtVARxIJ3IZudtCnbbNnEqm9vpOLFMIc5w-HwnaNR6AMgdEXJlFKuqmsDuykrC0KoOEFjVmZNRfU-yppKVZSiYmdoEuOWEMIZl0rKMWqewW5M8NZ0-A425uD7Ad_DHkILwQLuA55Dn-Ar-Q4iXoQEwyeYA-BZH5xffwwm-fy0itBiH_LVxJSzXiGm_uhdolNnugiTv32BVo8Pb7OnYvkyX8xul8WWChWKuq1tw7itS9NK20hBjbK0og04IRpeMysE40o6B9Jx1ZaNc9QCrVkNjlaMX6CbY-42N1iD3g9-Z4ZvbYbkbQc689FKkzys1L-U_p1MYNAQ-A8utmYn
ContentType Journal Article
Copyright The Japanese Society of Experimental Mechanics
Copyright_xml – notice: The Japanese Society of Experimental Mechanics
DOI 10.11395/aem.24-0017
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2424-175X
ExternalDocumentID article_aem_9_0_9_24_0017_article_char_en
GroupedDBID ADMLS
ALMA_UNASSIGNED_HOLDINGS
JSF
JSH
OK1
RJT
RZJ
ID FETCH-LOGICAL-j179n-6d6cb23c64ad8cb871a9c151bef77b362c772398ffe8f39d4bff1ce1626ef1523
ISSN 2189-4752
IngestDate Wed Sep 03 06:30:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j179n-6d6cb23c64ad8cb871a9c151bef77b362c772398ffe8f39d4bff1ce1626ef1523
OpenAccessLink https://www.jstage.jst.go.jp/article/aem/9/0/9_24-0017/_article/-char/en
ParticipantIDs jstage_primary_article_aem_9_0_9_24_0017_article_char_en
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Advanced Experimental Mechanics
PublicationTitleAlternate AEM
PublicationYear 2024
Publisher The Japanese Society for Experimental Mechanics
Publisher_xml – name: The Japanese Society for Experimental Mechanics
References [17] Yi, Y., Xin, B., Zheng, Y., Shi, M., Lin, L.T., Gao, C.,Zhang, X., Yang, Z., Li, H.: Investigation of tensile behavior and failure mechanism of woven fabric based on acoustic emission, J. Text. Inst., 112-10 (2021) 1631- 1638.
[5] Oh Y.I. , Shin E.C. . Using submerged geotextile tubes in the protection of the E. Korean shore, Coast. Eng, 53 (2006), 879–895.
[7] Guo W. , Chu J. , Nie W. . Analysis of geosynthetic tubes inflated by liquid and consolidated soil, Geotext. Geomembr, 42 (2014), 277-283.
[1] Shin E.C. , Oh Y.I. . Coastal erosion prevention by geotextile tube technology, Geotext. Geomembr, 25 (2007), 264–277.
[13]Cheah, C., Gallage, C., Dawes, L., Kendall, P.:Measuring hydraulic properties of geotextiles after installation damage, Geotext. Geomembr., 45 (2017) 462-470.
[2] Amos D. , Akib S. . A Review of Coastal Protection Using artificial and natural countermeasures—mangrove vegetation and polymers, Eng., 4 (2023), 941–953.
[4] Hornsey W.P. , Carley J.T. , Coghlan I.R. , Cox R.J. . Geotextile sand container shoreline protection systems: Design and application, Geotext. Geomembr, 29 (2011), 425-439.
[6] Leshchinsky D. , Leshchinsky O. , Ling H.I. , Gilbert P.A. . Geosynthetic tubes for confining pressurized slurry: some design aspects, J. Geotech. Eng, 122 (1996), 682-690.
[9] Ozgen, B., Gong, H.: Yarn geometry in woven fabrics, Text. Res. J., 81(2012) 738–745
[8] Li, M., Wang, P., Boussu, F., Soulat, D.: effect of fabric architecture on tensile behaviour of the high-molecular weight polyethylene 3-dimensional interlock composite reinforcements, Polymers, 12 (2020) 1045, 1-18.
[20] Rios, C.R., Ogin, S.L., Lekakou, C., Leong, K.H.: A study of damage development in a weft knitted fabric reinforced composite. Part 1: Experiments using model sandwich laminates, Compos. - A: Appl. Sci., 38 (2007) 1773–1793.
[21] Rios-Soberanis, C.R., Cruz-Estrada, R.H., RodriguezLaviada, J., Perez-Pacheco, E.: Study of mechanical behavior of textile reinforced composite materials,Dyna., 176 (2012) 118–126.
[11] Cantre S.: Geotextile tubes—analytical design aspect, Geotext. Geomembr., 20 (2002) 305–319.
[15] Diasa, M., Carneiro, J.R., Lopes, M.L.: Resistance of a nonwoven geotextile against mechanical damage and abrasion, Cienc. e Tecnol. dos Mater., 29 (2017) e177– e181.
[22]Barré, S., Benzeggagh, M.L.: On the use of acoustic emission to investigate damage mechanisms in glass fibre-reinforced polypropylene, Compos. Sci. Technol.,52 (1994) 369-376.
[14] Carlos, D.M., Carneiro, J.R., Lopes, M.L.: Effect of different aggregates on the mechanical damage suffered by geotextiles, Materials, 12 (2019) 1-15.
[12] Nizam, E.H., Das, S.C.: Geo Textile - A tremendous invention of geo technical engineering, Int. J. Adv. Struct. Geotech. Eng., 3 (2014) 221-227.
[19] Carvelli, V., D’Ettorre, A., Lomov, S.V.: Acoustic emission and damage mode correlation in textile reinforced PPS composites, Compos. Struct., 163 (2017) 399–409.
[16] Dehnad, M., Dolatabadi, M.K., Najafabadi, M.A.,Jeddi, A.A.A.: Behavior of woven fabric composite under tensile loads in different directions using acoustic emission, J. Ind. Text., 52 (2022) 1–21.
[18] Tian, Q., Qin, Z., Shi, B., Jia, L., Lu, S., Yan R.: Low velocity impact resistance and acoustic emission evaluation on mechanical failure of carbon fiber weftknitting-reinforced composites, Polym Adv Technol., 32 (2021) 3123–3136.
[3] Chávez V. , Lithgow D. , Losada M. , Silva-Casarin R. . Coastal green infrastructure to mitigate coastal squeeze, J Infrastruct Preserv Resil, 2-7 (2021), 1-12.
[10] Stig, F., Hallström, S.: Spatial modelling of 3D-woven textiles, Compos. Struct., 94 (2012) 1495–1502.
References_xml – reference: [4] Hornsey W.P. , Carley J.T. , Coghlan I.R. , Cox R.J. . Geotextile sand container shoreline protection systems: Design and application, Geotext. Geomembr, 29 (2011), 425-439.
– reference: [20] Rios, C.R., Ogin, S.L., Lekakou, C., Leong, K.H.: A study of damage development in a weft knitted fabric reinforced composite. Part 1: Experiments using model sandwich laminates, Compos. - A: Appl. Sci., 38 (2007) 1773–1793.
– reference: [9] Ozgen, B., Gong, H.: Yarn geometry in woven fabrics, Text. Res. J., 81(2012) 738–745
– reference: [1] Shin E.C. , Oh Y.I. . Coastal erosion prevention by geotextile tube technology, Geotext. Geomembr, 25 (2007), 264–277.
– reference: [12] Nizam, E.H., Das, S.C.: Geo Textile - A tremendous invention of geo technical engineering, Int. J. Adv. Struct. Geotech. Eng., 3 (2014) 221-227.
– reference: [8] Li, M., Wang, P., Boussu, F., Soulat, D.: effect of fabric architecture on tensile behaviour of the high-molecular weight polyethylene 3-dimensional interlock composite reinforcements, Polymers, 12 (2020) 1045, 1-18.
– reference: [14] Carlos, D.M., Carneiro, J.R., Lopes, M.L.: Effect of different aggregates on the mechanical damage suffered by geotextiles, Materials, 12 (2019) 1-15.
– reference: [5] Oh Y.I. , Shin E.C. . Using submerged geotextile tubes in the protection of the E. Korean shore, Coast. Eng, 53 (2006), 879–895.
– reference: [11] Cantre S.: Geotextile tubes—analytical design aspect, Geotext. Geomembr., 20 (2002) 305–319.
– reference: [19] Carvelli, V., D’Ettorre, A., Lomov, S.V.: Acoustic emission and damage mode correlation in textile reinforced PPS composites, Compos. Struct., 163 (2017) 399–409.
– reference: [21] Rios-Soberanis, C.R., Cruz-Estrada, R.H., RodriguezLaviada, J., Perez-Pacheco, E.: Study of mechanical behavior of textile reinforced composite materials,Dyna., 176 (2012) 118–126.
– reference: [2] Amos D. , Akib S. . A Review of Coastal Protection Using artificial and natural countermeasures—mangrove vegetation and polymers, Eng., 4 (2023), 941–953.
– reference: [22]Barré, S., Benzeggagh, M.L.: On the use of acoustic emission to investigate damage mechanisms in glass fibre-reinforced polypropylene, Compos. Sci. Technol.,52 (1994) 369-376.
– reference: [17] Yi, Y., Xin, B., Zheng, Y., Shi, M., Lin, L.T., Gao, C.,Zhang, X., Yang, Z., Li, H.: Investigation of tensile behavior and failure mechanism of woven fabric based on acoustic emission, J. Text. Inst., 112-10 (2021) 1631- 1638.
– reference: [6] Leshchinsky D. , Leshchinsky O. , Ling H.I. , Gilbert P.A. . Geosynthetic tubes for confining pressurized slurry: some design aspects, J. Geotech. Eng, 122 (1996), 682-690.
– reference: [18] Tian, Q., Qin, Z., Shi, B., Jia, L., Lu, S., Yan R.: Low velocity impact resistance and acoustic emission evaluation on mechanical failure of carbon fiber weftknitting-reinforced composites, Polym Adv Technol., 32 (2021) 3123–3136.
– reference: [16] Dehnad, M., Dolatabadi, M.K., Najafabadi, M.A.,Jeddi, A.A.A.: Behavior of woven fabric composite under tensile loads in different directions using acoustic emission, J. Ind. Text., 52 (2022) 1–21.
– reference: [13]Cheah, C., Gallage, C., Dawes, L., Kendall, P.:Measuring hydraulic properties of geotextiles after installation damage, Geotext. Geomembr., 45 (2017) 462-470.
– reference: [3] Chávez V. , Lithgow D. , Losada M. , Silva-Casarin R. . Coastal green infrastructure to mitigate coastal squeeze, J Infrastruct Preserv Resil, 2-7 (2021), 1-12.
– reference: [7] Guo W. , Chu J. , Nie W. . Analysis of geosynthetic tubes inflated by liquid and consolidated soil, Geotext. Geomembr, 42 (2014), 277-283.
– reference: [10] Stig, F., Hallström, S.: Spatial modelling of 3D-woven textiles, Compos. Struct., 94 (2012) 1495–1502.
– reference: [15] Diasa, M., Carneiro, J.R., Lopes, M.L.: Resistance of a nonwoven geotextile against mechanical damage and abrasion, Cienc. e Tecnol. dos Mater., 29 (2017) e177– e181.
SSID ssj0003238988
Score 2.2432902
Snippet Geotubes are the most used technology for coastal recovery due to erosion and, because of the lower price and easier installation, geotextile tube systems can...
SourceID jstage
SourceType Publisher
StartPage 24-0017
SubjectTerms Failure behavior
Geotextiles
Mechanical properties
Textile characterization
Title Mechanical Behavior Dependence on Geotextiles Interweave Configuration Used in Coastal Restoration
URI https://www.jstage.jst.go.jp/article/aem/9/0/9_24-0017/_article/-char/en
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Advanced Experimental Mechanics, 2024, Vol.9, pp.24-0017
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9sIFgQoCCsgHbshLkzivY1iCdgv70D7EwiWyHbtN1SZoH0LiV_YndRznVVSh0sNaK6-9eXxfxjOTmTFC77ntB0ylnEgvPSHUoTZhvmMRaXOhOCyILtP5zuOJN1zR07W77vWuO1FL-x3viz935pU8BFXoA1x1lux_INv8KXTAd8AXWkAY2nthPJY6b7e8zVWdww0IELOrLTyvumCGLHRoBzz6W-P8-y31dkM6zy8721for7YyNdl_bLsri-3rkMkWsrpIbR0uEHd3BajPodHNv0dfox_aca_9quf7TJxnzYuOaLKcktkIWuO535xJHXJyWTSzZ_E8_klm0WAYD8pB8VV2aWLFyvdCo-mCLKaf4nk0GS2qiBWY_mFe6BDNouvEsFv3ZZkAB2qB3m7zVqDqPy6llI6gmoSE-qb8bV-aPmpTAvrQuivew654pkQvy3cvHU6oy2wwedXvDPurGHcFdQKjkjA5gY9NdVign9S_6GQ54OYjdGj7vgVy9jD6PP62aPx-DuhIYbkdanMFdT4GnMDHzuFBJ7oA1OvowlLhWT5FTypLBUfmiM9QT-ZHiLeUwzXlcEs5XOS4QzncUg7fohzWlMNZjivK4Q7lnqPVl3g5GJJqmw5yAdI8J17qCW47wqMsDQQHC5yFAhRJLpXvc1CQBFhwThgoJQPlhCnlSllCWmBKSwXqo_MCHeRFLl8inMpAOAqMisBi1BVg-7puwMBEZhYXTLFXKDC3JPllarEk9wbk9cOnHqPHmrPG8fYGHew2e_kWVNEdf1ehewM5npVw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Behavior+Dependence+on+Geotextiles+Interweave+Configuration+Used+in+Coastal+Restoration&rft.jtitle=Advanced+Experimental+Mechanics&rft.au=WAKAYAMA%2C+Shuichi&rft.au=CANTO-PINTO%2C+Jorge+Carlos&rft.au=PEREZ-PACHECO%2C+Emilio&rft.au=RIOS-SOBERANIS%2C+Carlos+Rolando&rft.date=2024&rft.pub=The+Japanese+Society+for+Experimental+Mechanics&rft.issn=2189-4752&rft.eissn=2424-175X&rft.volume=9&rft.spage=24-0017&rft_id=info:doi/10.11395%2Faem.24-0017&rft.externalDocID=article_aem_9_0_9_24_0017_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2189-4752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2189-4752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2189-4752&client=summon