Mechanical Behavior Dependence on Geotextiles Interweave Configuration Used in Coastal Restoration
Geotubes are the most used technology for coastal recovery due to erosion and, because of the lower price and easier installation, geotextile tube systems can be good alternatives for hydraulic and coastal structures. Geotubes can suffer damage due to cuts in fibers and other components, formation o...
Saved in:
Published in | Advanced Experimental Mechanics Vol. 9; p. 24-0017 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
The Japanese Society for Experimental Mechanics
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2189-4752 2424-175X |
DOI | 10.11395/aem.24-0017 |
Cover
Loading…
Abstract | Geotubes are the most used technology for coastal recovery due to erosion and, because of the lower price and easier installation, geotextile tube systems can be good alternatives for hydraulic and coastal structures. Geotubes can suffer damage due to cuts in fibers and other components, formation of holes, abrasion originating a reduction in mechanical resistance. On the other hand, when filled in-situ by hydraulic pumping is assumed that tensile stresses act directionally due to the hydraulic pressure and the tensile force in the geosynthetic tube. Therefore, it is important to understand the mechanical behavior as well as to identify the stages during the damage process. A mechanical vital role is sustained by the textile architecture and configuration since stresses will be transferred along the textiles. This paper exhibits the full mechanical characterization of two geotextiles made of polyethilenethereftalate (PET) and polypropylene (PP) respectively, both with different interweave architecture. Results found that textile geometry is crucial for bearing stresses and depend on the acting direction. Acoustic emission technique was employed to identify the mechanism of failure that supported the mechanical characterization findings. |
---|---|
AbstractList | Geotubes are the most used technology for coastal recovery due to erosion and, because of the lower price and easier installation, geotextile tube systems can be good alternatives for hydraulic and coastal structures. Geotubes can suffer damage due to cuts in fibers and other components, formation of holes, abrasion originating a reduction in mechanical resistance. On the other hand, when filled in-situ by hydraulic pumping is assumed that tensile stresses act directionally due to the hydraulic pressure and the tensile force in the geosynthetic tube. Therefore, it is important to understand the mechanical behavior as well as to identify the stages during the damage process. A mechanical vital role is sustained by the textile architecture and configuration since stresses will be transferred along the textiles. This paper exhibits the full mechanical characterization of two geotextiles made of polyethilenethereftalate (PET) and polypropylene (PP) respectively, both with different interweave architecture. Results found that textile geometry is crucial for bearing stresses and depend on the acting direction. Acoustic emission technique was employed to identify the mechanism of failure that supported the mechanical characterization findings. |
Author | WAKAYAMA, Shuichi PEREZ-PACHECO, Emilio RIOS-SOBERANIS, Carlos Rolando SAKAI, Takenobu CANTO-PINTO, Jorge Carlos |
Author_xml | – sequence: 1 fullname: WAKAYAMA, Shuichi organization: Department of Mechanical Engineering, Tokyo Metropolitan University – sequence: 1 fullname: CANTO-PINTO, Jorge Carlos organization: Tecnológico Nacional de México. Campus Instituto Tecnológico Superior de Calkiní. Cuerpo Académico Bioprocesos – sequence: 1 fullname: PEREZ-PACHECO, Emilio organization: Universidad Modelo, Centro de Investigaciones Silvio Zavala – sequence: 1 fullname: RIOS-SOBERANIS, Carlos Rolando organization: Centro de Investigación Científica de Yucatán, A.C – sequence: 1 fullname: SAKAI, Takenobu organization: Graduate School of Science and Engineering, Saitama University |
BookMark | eNo9kN1KAzEQhYNUsGrvfIC8wNb87G6SK9GqtVARxIJ3IZudtCnbbNnEqm9vpOLFMIc5w-HwnaNR6AMgdEXJlFKuqmsDuykrC0KoOEFjVmZNRfU-yppKVZSiYmdoEuOWEMIZl0rKMWqewW5M8NZ0-A425uD7Ad_DHkILwQLuA55Dn-Ar-Q4iXoQEwyeYA-BZH5xffwwm-fy0itBiH_LVxJSzXiGm_uhdolNnugiTv32BVo8Pb7OnYvkyX8xul8WWChWKuq1tw7itS9NK20hBjbK0og04IRpeMysE40o6B9Jx1ZaNc9QCrVkNjlaMX6CbY-42N1iD3g9-Z4ZvbYbkbQc689FKkzys1L-U_p1MYNAQ-A8utmYn |
ContentType | Journal Article |
Copyright | The Japanese Society of Experimental Mechanics |
Copyright_xml | – notice: The Japanese Society of Experimental Mechanics |
DOI | 10.11395/aem.24-0017 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2424-175X |
ExternalDocumentID | article_aem_9_0_9_24_0017_article_char_en |
GroupedDBID | ADMLS ALMA_UNASSIGNED_HOLDINGS JSF JSH OK1 RJT RZJ |
ID | FETCH-LOGICAL-j179n-6d6cb23c64ad8cb871a9c151bef77b362c772398ffe8f39d4bff1ce1626ef1523 |
ISSN | 2189-4752 |
IngestDate | Wed Sep 03 06:30:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j179n-6d6cb23c64ad8cb871a9c151bef77b362c772398ffe8f39d4bff1ce1626ef1523 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/aem/9/0/9_24-0017/_article/-char/en |
ParticipantIDs | jstage_primary_article_aem_9_0_9_24_0017_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | Advanced Experimental Mechanics |
PublicationTitleAlternate | AEM |
PublicationYear | 2024 |
Publisher | The Japanese Society for Experimental Mechanics |
Publisher_xml | – name: The Japanese Society for Experimental Mechanics |
References | [17] Yi, Y., Xin, B., Zheng, Y., Shi, M., Lin, L.T., Gao, C.,Zhang, X., Yang, Z., Li, H.: Investigation of tensile behavior and failure mechanism of woven fabric based on acoustic emission, J. Text. Inst., 112-10 (2021) 1631- 1638. [5] Oh Y.I. , Shin E.C. . Using submerged geotextile tubes in the protection of the E. Korean shore, Coast. Eng, 53 (2006), 879–895. [7] Guo W. , Chu J. , Nie W. . Analysis of geosynthetic tubes inflated by liquid and consolidated soil, Geotext. Geomembr, 42 (2014), 277-283. [1] Shin E.C. , Oh Y.I. . Coastal erosion prevention by geotextile tube technology, Geotext. Geomembr, 25 (2007), 264–277. [13]Cheah, C., Gallage, C., Dawes, L., Kendall, P.:Measuring hydraulic properties of geotextiles after installation damage, Geotext. Geomembr., 45 (2017) 462-470. [2] Amos D. , Akib S. . A Review of Coastal Protection Using artificial and natural countermeasures—mangrove vegetation and polymers, Eng., 4 (2023), 941–953. [4] Hornsey W.P. , Carley J.T. , Coghlan I.R. , Cox R.J. . Geotextile sand container shoreline protection systems: Design and application, Geotext. Geomembr, 29 (2011), 425-439. [6] Leshchinsky D. , Leshchinsky O. , Ling H.I. , Gilbert P.A. . Geosynthetic tubes for confining pressurized slurry: some design aspects, J. Geotech. Eng, 122 (1996), 682-690. [9] Ozgen, B., Gong, H.: Yarn geometry in woven fabrics, Text. Res. J., 81(2012) 738–745 [8] Li, M., Wang, P., Boussu, F., Soulat, D.: effect of fabric architecture on tensile behaviour of the high-molecular weight polyethylene 3-dimensional interlock composite reinforcements, Polymers, 12 (2020) 1045, 1-18. [20] Rios, C.R., Ogin, S.L., Lekakou, C., Leong, K.H.: A study of damage development in a weft knitted fabric reinforced composite. Part 1: Experiments using model sandwich laminates, Compos. - A: Appl. Sci., 38 (2007) 1773–1793. [21] Rios-Soberanis, C.R., Cruz-Estrada, R.H., RodriguezLaviada, J., Perez-Pacheco, E.: Study of mechanical behavior of textile reinforced composite materials,Dyna., 176 (2012) 118–126. [11] Cantre S.: Geotextile tubes—analytical design aspect, Geotext. Geomembr., 20 (2002) 305–319. [15] Diasa, M., Carneiro, J.R., Lopes, M.L.: Resistance of a nonwoven geotextile against mechanical damage and abrasion, Cienc. e Tecnol. dos Mater., 29 (2017) e177– e181. [22]Barré, S., Benzeggagh, M.L.: On the use of acoustic emission to investigate damage mechanisms in glass fibre-reinforced polypropylene, Compos. Sci. Technol.,52 (1994) 369-376. [14] Carlos, D.M., Carneiro, J.R., Lopes, M.L.: Effect of different aggregates on the mechanical damage suffered by geotextiles, Materials, 12 (2019) 1-15. [12] Nizam, E.H., Das, S.C.: Geo Textile - A tremendous invention of geo technical engineering, Int. J. Adv. Struct. Geotech. Eng., 3 (2014) 221-227. [19] Carvelli, V., D’Ettorre, A., Lomov, S.V.: Acoustic emission and damage mode correlation in textile reinforced PPS composites, Compos. Struct., 163 (2017) 399–409. [16] Dehnad, M., Dolatabadi, M.K., Najafabadi, M.A.,Jeddi, A.A.A.: Behavior of woven fabric composite under tensile loads in different directions using acoustic emission, J. Ind. Text., 52 (2022) 1–21. [18] Tian, Q., Qin, Z., Shi, B., Jia, L., Lu, S., Yan R.: Low velocity impact resistance and acoustic emission evaluation on mechanical failure of carbon fiber weftknitting-reinforced composites, Polym Adv Technol., 32 (2021) 3123–3136. [3] Chávez V. , Lithgow D. , Losada M. , Silva-Casarin R. . Coastal green infrastructure to mitigate coastal squeeze, J Infrastruct Preserv Resil, 2-7 (2021), 1-12. [10] Stig, F., Hallström, S.: Spatial modelling of 3D-woven textiles, Compos. Struct., 94 (2012) 1495–1502. |
References_xml | – reference: [4] Hornsey W.P. , Carley J.T. , Coghlan I.R. , Cox R.J. . Geotextile sand container shoreline protection systems: Design and application, Geotext. Geomembr, 29 (2011), 425-439. – reference: [20] Rios, C.R., Ogin, S.L., Lekakou, C., Leong, K.H.: A study of damage development in a weft knitted fabric reinforced composite. Part 1: Experiments using model sandwich laminates, Compos. - A: Appl. Sci., 38 (2007) 1773–1793. – reference: [9] Ozgen, B., Gong, H.: Yarn geometry in woven fabrics, Text. Res. J., 81(2012) 738–745 – reference: [1] Shin E.C. , Oh Y.I. . Coastal erosion prevention by geotextile tube technology, Geotext. Geomembr, 25 (2007), 264–277. – reference: [12] Nizam, E.H., Das, S.C.: Geo Textile - A tremendous invention of geo technical engineering, Int. J. Adv. Struct. Geotech. Eng., 3 (2014) 221-227. – reference: [8] Li, M., Wang, P., Boussu, F., Soulat, D.: effect of fabric architecture on tensile behaviour of the high-molecular weight polyethylene 3-dimensional interlock composite reinforcements, Polymers, 12 (2020) 1045, 1-18. – reference: [14] Carlos, D.M., Carneiro, J.R., Lopes, M.L.: Effect of different aggregates on the mechanical damage suffered by geotextiles, Materials, 12 (2019) 1-15. – reference: [5] Oh Y.I. , Shin E.C. . Using submerged geotextile tubes in the protection of the E. Korean shore, Coast. Eng, 53 (2006), 879–895. – reference: [11] Cantre S.: Geotextile tubes—analytical design aspect, Geotext. Geomembr., 20 (2002) 305–319. – reference: [19] Carvelli, V., D’Ettorre, A., Lomov, S.V.: Acoustic emission and damage mode correlation in textile reinforced PPS composites, Compos. Struct., 163 (2017) 399–409. – reference: [21] Rios-Soberanis, C.R., Cruz-Estrada, R.H., RodriguezLaviada, J., Perez-Pacheco, E.: Study of mechanical behavior of textile reinforced composite materials,Dyna., 176 (2012) 118–126. – reference: [2] Amos D. , Akib S. . A Review of Coastal Protection Using artificial and natural countermeasures—mangrove vegetation and polymers, Eng., 4 (2023), 941–953. – reference: [22]Barré, S., Benzeggagh, M.L.: On the use of acoustic emission to investigate damage mechanisms in glass fibre-reinforced polypropylene, Compos. Sci. Technol.,52 (1994) 369-376. – reference: [17] Yi, Y., Xin, B., Zheng, Y., Shi, M., Lin, L.T., Gao, C.,Zhang, X., Yang, Z., Li, H.: Investigation of tensile behavior and failure mechanism of woven fabric based on acoustic emission, J. Text. Inst., 112-10 (2021) 1631- 1638. – reference: [6] Leshchinsky D. , Leshchinsky O. , Ling H.I. , Gilbert P.A. . Geosynthetic tubes for confining pressurized slurry: some design aspects, J. Geotech. Eng, 122 (1996), 682-690. – reference: [18] Tian, Q., Qin, Z., Shi, B., Jia, L., Lu, S., Yan R.: Low velocity impact resistance and acoustic emission evaluation on mechanical failure of carbon fiber weftknitting-reinforced composites, Polym Adv Technol., 32 (2021) 3123–3136. – reference: [16] Dehnad, M., Dolatabadi, M.K., Najafabadi, M.A.,Jeddi, A.A.A.: Behavior of woven fabric composite under tensile loads in different directions using acoustic emission, J. Ind. Text., 52 (2022) 1–21. – reference: [13]Cheah, C., Gallage, C., Dawes, L., Kendall, P.:Measuring hydraulic properties of geotextiles after installation damage, Geotext. Geomembr., 45 (2017) 462-470. – reference: [3] Chávez V. , Lithgow D. , Losada M. , Silva-Casarin R. . Coastal green infrastructure to mitigate coastal squeeze, J Infrastruct Preserv Resil, 2-7 (2021), 1-12. – reference: [7] Guo W. , Chu J. , Nie W. . Analysis of geosynthetic tubes inflated by liquid and consolidated soil, Geotext. Geomembr, 42 (2014), 277-283. – reference: [10] Stig, F., Hallström, S.: Spatial modelling of 3D-woven textiles, Compos. Struct., 94 (2012) 1495–1502. – reference: [15] Diasa, M., Carneiro, J.R., Lopes, M.L.: Resistance of a nonwoven geotextile against mechanical damage and abrasion, Cienc. e Tecnol. dos Mater., 29 (2017) e177– e181. |
SSID | ssj0003238988 |
Score | 2.2432902 |
Snippet | Geotubes are the most used technology for coastal recovery due to erosion and, because of the lower price and easier installation, geotextile tube systems can... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 24-0017 |
SubjectTerms | Failure behavior Geotextiles Mechanical properties Textile characterization |
Title | Mechanical Behavior Dependence on Geotextiles Interweave Configuration Used in Coastal Restoration |
URI | https://www.jstage.jst.go.jp/article/aem/9/0/9_24-0017/_article/-char/en |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Advanced Experimental Mechanics, 2024, Vol.9, pp.24-0017 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9sIFgQoCCsgHbshLkzivY1iCdgv70D7EwiWyHbtN1SZoH0LiV_YndRznVVSh0sNaK6-9eXxfxjOTmTFC77ntB0ylnEgvPSHUoTZhvmMRaXOhOCyILtP5zuOJN1zR07W77vWuO1FL-x3viz935pU8BFXoA1x1lux_INv8KXTAd8AXWkAY2nthPJY6b7e8zVWdww0IELOrLTyvumCGLHRoBzz6W-P8-y31dkM6zy8721for7YyNdl_bLsri-3rkMkWsrpIbR0uEHd3BajPodHNv0dfox_aca_9quf7TJxnzYuOaLKcktkIWuO535xJHXJyWTSzZ_E8_klm0WAYD8pB8VV2aWLFyvdCo-mCLKaf4nk0GS2qiBWY_mFe6BDNouvEsFv3ZZkAB2qB3m7zVqDqPy6llI6gmoSE-qb8bV-aPmpTAvrQuivew654pkQvy3cvHU6oy2wwedXvDPurGHcFdQKjkjA5gY9NdVign9S_6GQ54OYjdGj7vgVy9jD6PP62aPx-DuhIYbkdanMFdT4GnMDHzuFBJ7oA1OvowlLhWT5FTypLBUfmiM9QT-ZHiLeUwzXlcEs5XOS4QzncUg7fohzWlMNZjivK4Q7lnqPVl3g5GJJqmw5yAdI8J17qCW47wqMsDQQHC5yFAhRJLpXvc1CQBFhwThgoJQPlhCnlSllCWmBKSwXqo_MCHeRFLl8inMpAOAqMisBi1BVg-7puwMBEZhYXTLFXKDC3JPllarEk9wbk9cOnHqPHmrPG8fYGHew2e_kWVNEdf1ehewM5npVw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+Behavior+Dependence+on+Geotextiles+Interweave+Configuration+Used+in+Coastal+Restoration&rft.jtitle=Advanced+Experimental+Mechanics&rft.au=WAKAYAMA%2C+Shuichi&rft.au=CANTO-PINTO%2C+Jorge+Carlos&rft.au=PEREZ-PACHECO%2C+Emilio&rft.au=RIOS-SOBERANIS%2C+Carlos+Rolando&rft.date=2024&rft.pub=The+Japanese+Society+for+Experimental+Mechanics&rft.issn=2189-4752&rft.eissn=2424-175X&rft.volume=9&rft.spage=24-0017&rft_id=info:doi/10.11395%2Faem.24-0017&rft.externalDocID=article_aem_9_0_9_24_0017_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2189-4752&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2189-4752&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2189-4752&client=summon |