Testing Method and Design Guideline of Unit Cell Shape of Cellular Structures Made of AZ31 Magnesium Alloy Considering Application to Coronary Stent

Coronary stents are thin-walled cellular structures constructed by connecting unit cells in the circumferential and axial directions. The unit cell is subjected to in-plane bending during the expansion process in the diseased artery. As the simple test method to evaluate the in-plane bending and con...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Experimental Mechanics Vol. 9; p. 24-0007
Main Authors UEDA, Shunpei, SHIMIZU, Ichiro, WADA, Akira, TAKEMOTO, Yoshito, KAGOTANI, Tomoya
Format Journal Article
LanguageEnglish
Japanese
Published The Japanese Society for Experimental Mechanics 2024
Subjects
Online AccessGet full text
ISSN2189-4752
2424-175X
DOI10.11395/aem.24-0007

Cover

Abstract Coronary stents are thin-walled cellular structures constructed by connecting unit cells in the circumferential and axial directions. The unit cell is subjected to in-plane bending during the expansion process in the diseased artery. As the simple test method to evaluate the in-plane bending and contribute to the design of the stent unit cell shape, the rhombus-shaped specimen having the curved part and the straight part was suggested. The experimental and analytical investigations were performed on the rhombus specimen made of AZ31 magnesium alloy, and the influences of the design parameters on the strain gradient in the curved part and the deformability were investigated. The results proved that the rhombus-shaped specimen was useful to investigate the in-plane bending of the cellular structure. The in-plane strain gradient from tensile to compressive was found to occur in the curved part. Changing the design parameters of the rhombus specimen influences not only the deformability but also the tensile load, namely the force to keep the artery open. It should be emphasized that the addition of the appropriate length of a central straight part was found to be effective in improving the deformability of the cellular structure.
AbstractList Coronary stents are thin-walled cellular structures constructed by connecting unit cells in the circumferential and axial directions. The unit cell is subjected to in-plane bending during the expansion process in the diseased artery. As the simple test method to evaluate the in-plane bending and contribute to the design of the stent unit cell shape, the rhombus-shaped specimen having the curved part and the straight part was suggested. The experimental and analytical investigations were performed on the rhombus specimen made of AZ31 magnesium alloy, and the influences of the design parameters on the strain gradient in the curved part and the deformability were investigated. The results proved that the rhombus-shaped specimen was useful to investigate the in-plane bending of the cellular structure. The in-plane strain gradient from tensile to compressive was found to occur in the curved part. Changing the design parameters of the rhombus specimen influences not only the deformability but also the tensile load, namely the force to keep the artery open. It should be emphasized that the addition of the appropriate length of a central straight part was found to be effective in improving the deformability of the cellular structure.
Author WADA, Akira
KAGOTANI, Tomoya
SHIMIZU, Ichiro
TAKEMOTO, Yoshito
UEDA, Shunpei
Author_xml – sequence: 1
  fullname: UEDA, Shunpei
  organization: Graduate School of Engineering, Okayama University of Science
– sequence: 1
  fullname: SHIMIZU, Ichiro
  organization: Department of Mechanical Engineering, Okayama University of Science
– sequence: 1
  fullname: WADA, Akira
  organization: Japan Medical Device Technology Co., Ltd
– sequence: 1
  fullname: TAKEMOTO, Yoshito
  organization: Faculty of Environmental, Life, Natural Science and Technology, Okayama University
– sequence: 1
  fullname: KAGOTANI, Tomoya
  organization: Graduate School of Engineering, Okayama University of Science
BookMark eNo9UMtOwzAQtFCRKKU3PsA_kOJXYueEogAFiYpDWwlxiZzESV25TmU7h_4HH4xbEIfVzuysZldzCyZ2sAqAe4wWGNM8fZDqsCAsQQjxKzAlLGLM089JxFjkCeMpuQFz7_dxgxIqciGm4HujfNC2hysVdkMLpW3hk_K6t3A56lYZbRUcOri1OsBSGQPXO3m8jM5sNNLBdXBjE0anPFzJ9qIVXxRH0ttoNR5gYcxwguVgfbR053PF8Wh0I4MeLAxDlNxgpTtFL2XDHbjupPFq_tdnYPvyvClfk_eP5VtZvCd7zHObEIy7TNSMiawRXY0zgUiuWMrqnDPZtlSkWCBOKK3bhiouiEQE1TwjKcN5mtEZePz13fsge1UdnT7EJyrpgm6MqmKiVV6hWIRV51z_lWYnXaUs_QGJgHSi
ContentType Journal Article
Copyright The Japanese Society of Experimental Mechanics
Copyright_xml – notice: The Japanese Society of Experimental Mechanics
DOI 10.11395/aem.24-0007
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2424-175X
ExternalDocumentID article_aem_9_0_9_24_0007_article_char_en
GroupedDBID ADMLS
ALMA_UNASSIGNED_HOLDINGS
JSF
JSH
OK1
RJT
RZJ
ID FETCH-LOGICAL-j179n-211f68b4486c8fb168029e454b974add3851807233bdc3e782a020b7625419563
ISSN 2189-4752
IngestDate Wed Sep 03 06:30:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j179n-211f68b4486c8fb168029e454b974add3851807233bdc3e782a020b7625419563
OpenAccessLink https://www.jstage.jst.go.jp/article/aem/9/0/9_24-0007/_article/-char/en
ParticipantIDs jstage_primary_article_aem_9_0_9_24_0007_article_char_en
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Advanced Experimental Mechanics
PublicationTitleAlternate AEM
PublicationYear 2024
Publisher The Japanese Society for Experimental Mechanics
Publisher_xml – name: The Japanese Society for Experimental Mechanics
References 9) Tambaca, J., Canic, S., Kosor, M., Fish, R.D. and Paniagua, D.: Mechanical behavior of fully expanded commercially available endovascular coronary stents, Tex. Heart Inst. J., 38-5 (2011), 491-501.
2) Garg, S. and Serruys, P. W.: Coronary stents: Current status, J. Am. Coll. Cardiol., 56-10 (2010), S43-S78.
17) Shimizu, I., Wada, A., and Sasaki, M., “A Study on Designing Balloon Expandable Magnesium Alloy Stent for Optimization of Mechanical Characteristics”, Proceedings, 2 (2018), No. 52.
16) Iqbal, J., Onuma, Y., Ormiston, J., Abizaid, A., Waksman, R. and Serruys, P.: Bioresorbable scaffolds: rationale, current status, challenges, and future, Eur. Heart J., 35 (2014), 765-776.
4) Khan, W., Farah, S. and Domb, A. J.: Drug-eluting stents: Developments and current status, J. Control Release, 161 (2012), 703-712.
6) Petrini, L., Migliavacca, F., Auricchio, F. and Dubini, G.: Numerical investigation of the intravascular coronary stent flexibility, J. Biomech., 37 (2004), 495- 501.
12) e.g., ASTM F3067-14: Standard guide for radial loading of balloon-expandable and self-expanding vascular stents, ASTM International (2021).
11) Schiavone, A. and Zhao, L.: A computational study of stent performance by considering vessel anisotropy and residual stresses, Mater. Sci. Eng. C, 62 (2016), 307-316.
1) Garg, S. and Serruys, P. W.: Coronary stents: Current status, J. Am. Coll. Cardiol., 56-10 (2010), S1-S42.
18) Oh, S.I., Chen, C.C. and Kobayashi, S., Ductile Fracture in Axisymmetric Extrusion and Drawing - Part 2: Workability in Extrusion and Drawing, J. Manuf. Sci. Eng.,101 (1979), 36-44.
3) Ormiston, J. A., Webber, B. and Webster, M. W. I.: Stent longitudinal integrity, JACC Cardiovasc. Interv.,4-12 (2011), 1310-1317.
14) Ormiston, J. A. and Serruys, W. S.: Bioabsorbable coronary stents, Circ. Cardiovasc. Intervent., 2 (2009), 255-260.
7) Migliavacca, F., Petrini, L., Montanari, V. et al.: A predictive study of the mechanical behaviour of coronary stents by computer modelling, Med. Eng. Phys., 27 (2005), 13-18.
15) Kitabata, H., Waksman, R. and Warnack, B.: Bioresorbable metal scaffold for cardiovascular application: Current knowledge and future perspectives, Cardiovasc. Revasc. Med., 15 (2014), 109-116.
13) e.g., ISO 25539-2: Cardiovascular implants –Endovascular devices – Part 2: Vascular stents, International Organization for Standardization (2020).
5) Shimizu, I., Suzuki, T., Iwata, D. and Tada, N.: Development of test procedures and comparative mechanical property testing of balloon expandable stents, Adv. Exp. Mech., 1 (2016), 173-178.
8) Schmidt, W., Lanzer, P., Behrens, P. et al.: A comparison of the mechanical performance characteristics of seven drug-eluting stent systems, Catheter. Cardiovasc. Interv., 73 (2009), 350-360.
10) Grogan, J. A., Leen, S. B. and McHugh, P. E.: Comparing coronary stent material performance on a common geometric platform through simulated bench testing, J. Mech. Behav. Biomed. Mater., 12 (2012), 129-138.
References_xml – reference: 18) Oh, S.I., Chen, C.C. and Kobayashi, S., Ductile Fracture in Axisymmetric Extrusion and Drawing - Part 2: Workability in Extrusion and Drawing, J. Manuf. Sci. Eng.,101 (1979), 36-44.
– reference: 3) Ormiston, J. A., Webber, B. and Webster, M. W. I.: Stent longitudinal integrity, JACC Cardiovasc. Interv.,4-12 (2011), 1310-1317.
– reference: 16) Iqbal, J., Onuma, Y., Ormiston, J., Abizaid, A., Waksman, R. and Serruys, P.: Bioresorbable scaffolds: rationale, current status, challenges, and future, Eur. Heart J., 35 (2014), 765-776.
– reference: 2) Garg, S. and Serruys, P. W.: Coronary stents: Current status, J. Am. Coll. Cardiol., 56-10 (2010), S43-S78.
– reference: 9) Tambaca, J., Canic, S., Kosor, M., Fish, R.D. and Paniagua, D.: Mechanical behavior of fully expanded commercially available endovascular coronary stents, Tex. Heart Inst. J., 38-5 (2011), 491-501.
– reference: 8) Schmidt, W., Lanzer, P., Behrens, P. et al.: A comparison of the mechanical performance characteristics of seven drug-eluting stent systems, Catheter. Cardiovasc. Interv., 73 (2009), 350-360.
– reference: 1) Garg, S. and Serruys, P. W.: Coronary stents: Current status, J. Am. Coll. Cardiol., 56-10 (2010), S1-S42.
– reference: 14) Ormiston, J. A. and Serruys, W. S.: Bioabsorbable coronary stents, Circ. Cardiovasc. Intervent., 2 (2009), 255-260.
– reference: 13) e.g., ISO 25539-2: Cardiovascular implants –Endovascular devices – Part 2: Vascular stents, International Organization for Standardization (2020).
– reference: 4) Khan, W., Farah, S. and Domb, A. J.: Drug-eluting stents: Developments and current status, J. Control Release, 161 (2012), 703-712.
– reference: 6) Petrini, L., Migliavacca, F., Auricchio, F. and Dubini, G.: Numerical investigation of the intravascular coronary stent flexibility, J. Biomech., 37 (2004), 495- 501.
– reference: 15) Kitabata, H., Waksman, R. and Warnack, B.: Bioresorbable metal scaffold for cardiovascular application: Current knowledge and future perspectives, Cardiovasc. Revasc. Med., 15 (2014), 109-116.
– reference: 17) Shimizu, I., Wada, A., and Sasaki, M., “A Study on Designing Balloon Expandable Magnesium Alloy Stent for Optimization of Mechanical Characteristics”, Proceedings, 2 (2018), No. 52.
– reference: 10) Grogan, J. A., Leen, S. B. and McHugh, P. E.: Comparing coronary stent material performance on a common geometric platform through simulated bench testing, J. Mech. Behav. Biomed. Mater., 12 (2012), 129-138.
– reference: 12) e.g., ASTM F3067-14: Standard guide for radial loading of balloon-expandable and self-expanding vascular stents, ASTM International (2021).
– reference: 7) Migliavacca, F., Petrini, L., Montanari, V. et al.: A predictive study of the mechanical behaviour of coronary stents by computer modelling, Med. Eng. Phys., 27 (2005), 13-18.
– reference: 5) Shimizu, I., Suzuki, T., Iwata, D. and Tada, N.: Development of test procedures and comparative mechanical property testing of balloon expandable stents, Adv. Exp. Mech., 1 (2016), 173-178.
– reference: 11) Schiavone, A. and Zhao, L.: A computational study of stent performance by considering vessel anisotropy and residual stresses, Mater. Sci. Eng. C, 62 (2016), 307-316.
SSID ssj0003238988
Score 2.242426
Snippet Coronary stents are thin-walled cellular structures constructed by connecting unit cells in the circumferential and axial directions. The unit cell is...
SourceID jstage
SourceType Publisher
StartPage 24-0007
SubjectTerms Cellular structure
Coronary stent
Finite element method
Magnesium alloy
Unit cell design
Title Testing Method and Design Guideline of Unit Cell Shape of Cellular Structures Made of AZ31 Magnesium Alloy Considering Application to Coronary Stent
URI https://www.jstage.jst.go.jp/article/aem/9/0/9_24-0007/_article/-char/en
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Advanced Experimental Mechanics, 2024, Vol.9, pp.24-0007
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9MIFFQHirT1wqxxs7_p1tNKgCDA9JJGiXizv2iZpSxyV5FB-B3-P_8I360cMqlDpIVa8dmzH83nmm_HMLGPvYCOEp0rHCrX2LDyJthXmlAGgbTvPhOOXit7oJl_86UJ-XHrLweBXL2tpv1Mj_ePWupL7SBVjkCtVyf6HZLuDYgDfIV8sIWEs7yZjapEBVz8x00A3WcWUkQHJU_sqYpAgg8QrT8YUpJutsq0ZojWTgDoz_WP3cLpPkiw32-Jz4WDlK5TgmsL3V1fVTTexp4miHF56E3UdUxMESr6b7dosmratbZtgMOnPI5AUVG3cy7JfTE5jE4Vd7TfbYt0FfaZQrOcLo8X0an1ddQYkrvePL9fXnVWZx58mydn8zNiU6vsKmqof0XAPsUxTDQeOQHNv_pG1-o-rNKoSPCWyZFD3wh0V9Zh0pQVytOzr-qivqyWV1Ae32xERUc-NrPg26u32V2fuRu4p9kqj1MbHlfQyP0jbLVQ5B6A-YEduEDjekB3Fp8nnWRcEFCBMkZkbtfsHbXEGLuB97_QgSBdwF9pUQ8N-5sfsUeO28Lg-42M2KDZP2M8Gf7zGHwf-eI0_3uGPVyUn_HFCHDf4o6EWf_yAP074o22EP97hjxv88R7-eA9_fFfxFn_c4O8pW3yYzMdTq5nlw7qAMdhYruOUfqikDH0dlsrxQ9uNCulJBVcX1lfAJwjtwBVC5VoUYLQZXBwFI-5JKnYVz9hwU22K54yrKKeQS6a1LEHzcZjIDXNdqgxEOvO8Fyysb2K6rVu5pHcW4cv7__QVe0gor-N2r9kQ97V4Aya7U28bPPwGsNmodg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Testing+Method+and+Design+Guideline+of+Unit+Cell+Shape+of+Cellular+Structures+Made+of+AZ31+Magnesium+Alloy+Considering+Application+to+Coronary+Stent&rft.jtitle=Advanced+Experimental+Mechanics&rft.au=UEDA%2C+Shunpei&rft.au=SHIMIZU%2C+Ichiro&rft.au=WADA%2C+Akira&rft.au=TAKEMOTO%2C+Yoshito&rft.date=2024&rft.pub=The+Japanese+Society+for+Experimental+Mechanics&rft.issn=2189-4752&rft.eissn=2424-175X&rft.volume=9&rft.spage=24-0007&rft_id=info:doi/10.11395%2Faem.24-0007&rft.externalDocID=article_aem_9_0_9_24_0007_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2189-4752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2189-4752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2189-4752&client=summon