光共生を行う浮遊性有孔虫類の海洋生態学的研究

単細胞動物プランクトンである浮遊性有孔虫には,藻類との細胞内共生関係を築く種がおり,その関係性を「光共生」と呼んでいる。浮遊性有孔虫は,炭酸カルシウムの殻が微化石として地層中に保存され,かつ殻に生きていた当時の海洋環境および生態のシグナルが残されるという特徴があり,長時間スケールでの地球環境と生命の相互作用を探る上で,格好の研究材料である。また光共生は,生物進化的に重要な生態であるだけでなく,貧栄養海域における栄養戦略として,また炭素を中心とした物質循環の観点からも,地球表層システムにおいて重要な役割を果たしている。本稿では,浮遊性有孔虫と光共生に関する過去の知見を振り返りながら,著者らがこれ...

Full description

Saved in:
Bibliographic Details
Published in海の研究 Vol. 32; no. 2; pp. 17 - 35
Main Author 高木, 悠花
Format Journal Article
LanguageJapanese
Published 日本海洋学会 15.03.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 単細胞動物プランクトンである浮遊性有孔虫には,藻類との細胞内共生関係を築く種がおり,その関係性を「光共生」と呼んでいる。浮遊性有孔虫は,炭酸カルシウムの殻が微化石として地層中に保存され,かつ殻に生きていた当時の海洋環境および生態のシグナルが残されるという特徴があり,長時間スケールでの地球環境と生命の相互作用を探る上で,格好の研究材料である。また光共生は,生物進化的に重要な生態であるだけでなく,貧栄養海域における栄養戦略として,また炭素を中心とした物質循環の観点からも,地球表層システムにおいて重要な役割を果たしている。本稿では,浮遊性有孔虫と光共生に関する過去の知見を振り返りながら,著者らがこれまで行ってきた研究を,光共生シグナルの抽出,および光共生に関わる生物学的現象の解明を中心に概説する。また最後に,今後の光共生プランクトン研究の展望についても述べたい。
AbstractList 単細胞動物プランクトンである浮遊性有孔虫には,藻類との細胞内共生関係を築く種がおり,その関係性を「光共生」と呼んでいる。浮遊性有孔虫は,炭酸カルシウムの殻が微化石として地層中に保存され,かつ殻に生きていた当時の海洋環境および生態のシグナルが残されるという特徴があり,長時間スケールでの地球環境と生命の相互作用を探る上で,格好の研究材料である。また光共生は,生物進化的に重要な生態であるだけでなく,貧栄養海域における栄養戦略として,また炭素を中心とした物質循環の観点からも,地球表層システムにおいて重要な役割を果たしている。本稿では,浮遊性有孔虫と光共生に関する過去の知見を振り返りながら,著者らがこれまで行ってきた研究を,光共生シグナルの抽出,および光共生に関わる生物学的現象の解明を中心に概説する。また最後に,今後の光共生プランクトン研究の展望についても述べたい。
Author 高木, 悠花
Author_xml – sequence: 1
  fullname: 高木, 悠花
  organization: 千葉大学大学院理学研究院地球科学研究部門
BookMark eNo9kM1Kw0AcxBepYK29-hapu_9Nsrsn0eIXFLzoedmNiSbWVpJ66M2KEWo9SS-KqL0oIi0IVh-oJGnfwkrFy8xhfgzDLKJcrV5zEVomuGQJ4CvHym_Wz0oUSiAJm0N5INw2KMFWDuWxILbBqQ0LqBhFvsYYC8qAmXm0nsTtJP7Iuk-ji9tx72bUukqHg0nrOj1_TR_aSb87vnuf9B5HrUE6_E4_O1MyjTtJ_yW7v8yeu9nb1xKa91Q1cot_XkD7mxt75W2jsru1U16rGAFhQhlCuIIIbXLTdoSyhWkpaipg2tNYe9N1GOCAAngmpw5wgjlmijrY4trSls1pAa3OeoOooQ5deRr6JypsShU2fKfqytkFkoKEXyHsP3GOVCgDRX8AWrpvbw
ContentType Journal Article
Copyright 日本海洋学会, 2023 年
Copyright_xml – notice: 日本海洋学会, 2023 年
DOI 10.5928/kaiyou.32.2_17
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2186-3105
EndPage 35
ExternalDocumentID article_kaiyou_32_2_32_17_article_char_ja
GroupedDBID ABDBF
ALMA_UNASSIGNED_HOLDINGS
ID FETCH-LOGICAL-j179a-99e919b4846c9a6945a34a27bfb0bf836022d322f483c2810807a3c058b5b5683
ISSN 0916-8362
IngestDate Thu Aug 17 20:29:56 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j179a-99e919b4846c9a6945a34a27bfb0bf836022d322f483c2810807a3c058b5b5683
OpenAccessLink https://www.jstage.jst.go.jp/article/kaiyou/32/2/32_17/_article/-char/ja
PageCount 19
ParticipantIDs jstage_primary_article_kaiyou_32_2_32_17_article_char_ja
PublicationCentury 2000
PublicationDate 2023/03/15
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 2023/03/15
  day: 15
PublicationDecade 2020
PublicationTitle 海の研究
PublicationYear 2023
Publisher 日本海洋学会
Publisher_xml – name: 日本海洋学会
References Trench, R. K. (1979): The cell biology of plant-animal symbiosis. Annu. Rev. Plant Physiol., 30, 485–531. 10.1146/annurev.pp.30.060179.002413
Bennoun, P. (1982): Evidence for a respiratory chain in the chloroplast. Proc. Natl. Acad. Sci. USA, 79, 4352–4356. 10.1073/pnas.79.14.4352
Norris, R. D. (1996): Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera. Paleobiology, 22, 461–480. 10.1017/S0094837300016468
Birch, H. S., H. K. Coxall, and P. N. Pearson (2012): Evolutionary ecology of Early Paleocene planktonic foraminifera: size, depth habitat and symbiosis. Paleobiology, 38, 374– 390. 10.1666/11027.1
Goff, L. J. (1983): Algal Symbiosis: A Continuum of Interaction Strategies. Cambridge University Press, UK, 226 pp.
Stoecker, D. K. (1998): Conceptual models of mixotrophy in planktonic protists and some ecological and evolutionary implications. Eur. J. Protistol., 34, 281 -290. 10.1016/S0932-4739(98)80055-2
Takagi, H., K. Moriya, T. Ishimura, A. Suzuki, H. Kawahata, and H. Hirano (2015): Exploring photosymbiotic ecology of planktic foraminifers from chamber-by-chamber isotopic history of individual foraminifers. Paleobiology, 41, 108–121. 10.1017/pab.2014.7
Suggett, D. J., H. L. MacIntyre, T. M. Kana, and R. J. Geider (2009): Comparing electron transport with gas exchange: parameterising exchange rates between alternative photosynthetic currencies for eukaryotic phytoplankton. Aquat. Microb. Ecol., 56, 147-162. 10.3354/ame01303
Prášil, O., Z. Kolber, J. A. Berry, and P. G. Falkowski (1996): Cyclic electron flow around photosystem II in vivo. Photosyn. Res., 48, 395–410. 10.1007/BF00029472
Jonkers, L., H. Hillebrand, and M. Kucera (2019): Global change drives modern plankton communities away from the pre-industrial state. Nature, 570, 372–375. 10.1038/s41586-019-1230-3
Oppo, D. W., and R. G. Fairbanks (1989): Carbon isotope composition of tropical surface water during the past 22,000 years. Paleoceanography, 4, 333–351. 10.1029/PA004i004p00333
Lee, J. J. (2006): Algal symbiosis in larger foraminifera. Symbiosis, 42, 63–75. 10.1017/S2475262200002355
Suggett, D. J., C. M. Moore, and R. J. Geider (2011): Estimating aquatic productivity from active fluorescence measurements. p. 103–127, In Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications, edited by D. J. Suggett, O. Prášil, and M. A. Borowitzka, Springer, Dordrecht, Germany. 10.1007/978-90-481-9268-7_6
Kroon, D., and G. Ganssen (1989): Northern Indian Ocean upwelling cells and the stable isotope composition of living planktonic foraminifera. Deep Sea Res., 36, 1219–1236. 10.1016/0198-0149(89)90102-7
Shaw J. O., S. DʼHaenens, E. Thomas, R. D. Norris, J. A. Lyman, A. Bornemann, and P. M. Hull (2021): Photosymbiosis in planktonic foraminifera across the Paleocene-Eocene thermal maximum. Paleobiology, 47, 632–647. 10.1017/pab.2021.7
Houston, R. M., and B. T. Huber (1998): Evidence of photosymbiosis in fossil taxa? Ontogenetic stable isotope trends in some Late Cretaceous planktic foraminifera. Mar. Micropaleontol., 34, 29–46. 10.1016/S0377-8398(97)00038-8
Takagi, H., A. Kurasawa, and K. Kimoto (2020): Observation of asexual reproduction with symbiont transmission in planktonic foraminifera. J. Plankt. Res., 42, 403–410. 10.1093/plankt/fbaa033
Uhle, M. E., S. A. Macko, H. J. Spero, D. W. Lea, W. F. Ruddiman, and M. H. Engel (1999): The fate of nitrogen in the Orbulina universa foraminifera-symbiont system determined by nitrogen isotope analyses of shell-bound organic matter. Limnol. Oceanogr., 44, 1968-1977. 10.4319/lo.1999.44.8.1968
Jørgensen, B. B., J. Erez, N. P. Revsbech, and Y. Cohen (1985): Symbiotic photosynthesis in a planktonic foraminiferan Globigerinoides sacculifer (Brady), studied with microelectrodes. Limnol. Oceanogr., 30, 1253–1267. 10.4319/lo.1985.30.6.1253
Spero, H.J., and S. L. Parker (1985): Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa, and its potential contribution to oceanic primary productivity. J. Foram. Res., 15, 273-281. 10.2113/gsjfr.15.4.273
Takagi, H., K. Kimoto, and T. Fujiki (2022): Photosynthetic carbon assimilation and electron transport rates in two symbiont-bearing planktonic foraminifera. Front. Mar. Sci., 9, 803354. 10.3389/fmars.2022.803354
Wade, B. S., N. Al-Sabouni, C. Hemleben, and D. Kroon (2008): Symbiont bleaching in fossil planktic foraminifera. Evol. Ecol., 22, 253-265. 10.1007/s10682-007-9176-6
Zeebe, R. E., J. Bijma, and D. A. Wolf-Gladrow (1999): A diffusion-reaction model of carbon isotope fractionation in foraminifera. Mar. Chem., 64, 199-228. 10.1016/S0304-4203(98)00075-9
Tittensor, D. P., C. Mora, W. Jetz, H. K. Lotze, D. Ricard, E. V. Berghe, and B.Worm (2010): Global patterns and predictors of marine biodiversity across taxa. Nature, 466, 1098-1101. 10.1038/nature09329
Wolf-Gladrow, D. A., J. Bijma, and R. E. Zeebe (1999): Model simulation of the carbonate system in the microenvironment of symbiont bearing foraminifera. Mar. Chem., 64, 181-198. 10.1016/S0304-4203(98)00074-7
Emiliani, C. (1954): Depth habitat of some species of pelagic foraminifera as indicated by oxygen isotope ratio. Am. J. Sci., 252, 149–158. 10.2475/ajs.252.3.149
Bornemann, A., and R. D. Norris (2007): Size‐related stable isotope changes in Late Cretaceous planktic foraminifera: Implications for paleoecology and photosymbiosis. Mar. Micropaleontol., 65, 32–42. 10.1016/j.marmicro.2007.05.005
Ruddiman,W. F., D. S. Tolderlund, and A. W. H. Bé (1970): Foraminiferal evidence of a modern warming of the North Atlantic Ocean. Deep Sea Res. Oceanogr. Abstr., 17, 141–155. 10.1016/0011-7471(70)90093-8
Gastrich, M. D., and R. Bartha (1988): Primary productivity in the planktonic foraminifer Globigerinoides ruber (d’Orbigny). J. Foram. Res., 18, 137–142. 10.2113/gsjfr.18.2.137
LeKieffre, C., H. J. Spero, J. S. Fehrenbacher, A. D. Russell, H. Ren, E. Geslin, and A. Meibom (2020): Ammonium is the preferred source of nitrogen for planktonic foraminifer and their dinoflagellate symbionts. Proc. R. Soc. B, 287, 20200620. 10.1098/rspb.2020.0620
Katz, M. E., B. S. Crame, A. Franzes, B. Hönisch, K. G. Miller, Y. Rosenthal, and J. D. Wright (2010): Traditional and emerging geochemical proxies in foraminifera. J. Foram. Res., 40, 165–192. 10.2113/gsjfr.40.2.165
Hemleben, C., M. Spindler, and O. R. Anderson (1989): Modern planktonic foraminifera. Springer‐Verlag, New York, USA, 363 pp.
LeKieffre, C., H. J. Spero, A. D. Russell, J. S. Fehrenbacher, E. Geslin, and A. Meibom (2018): Assimilation, translocation, and utilization of carbon between photosynthetic symbiotic dinoflagellates and their planktic foraminifera host. Mar. Biol., 165 ,104. 10.1007/s00227-018-3362-7
Yellowlees, D., T. A. Rees, and W. Leggat (2008): Metabolic interactions between algal symbionts and invertebrate hosts. Plant Cell Env., 31, 679-694. 10.1111/j.1365-3040.2008.01802.x
Kawahata, H., K. Fujita, A. Iguchi, M. Inoue, S. Iwasaki, A. Kuroyanagi, A. Maeda, T. Manaka, K. Moriya, H. Takagi, T. Toyofuku, T. Yoshimura, and A. Suzuki (2019): Perspective on the response of marine calcifiers to global warming and ocean acidification: Behavior of corals and foraminifera in a high CO2 world "hot house". Prog. Earth Planet. Sci., 6, 1. 10.1186/s40645-018-0239-9
Houston, R. M., B. T. Huber, and H. J. Spero (1999): Size‐related isotopic trends in some Maastrichtian planktic foraminifera: Methodological comparisons, intraspecific variability and evidence for photosymbiosis. Mar. Micropaleontol., 36, 169–188. 10.1016/S0377-8398(99)00007-9
Ravelo, A., and C. Hillarie-Marcel (2007): The use of oxygen and carbon isotopes of foraminifera in paleoceanography. p. 735–764, In Proxies in Late Cenozoic Paleoceanography, Developments in Marine Geology, Vol. 1, edited by C. Hillaire-Marcel, and A. de Vernal, Elsevier, Amsterdam, Netherland.
Decelle, J., S. Colin, and R. A. Foster (2015): Photosymbiosis in marine planktonic protists. p. 465–500, In Marine Protists, edited by S. Ohtsuka, T. Suzaki, T. Horiguchi, N. Suzuki, F. Not, Springer, Tokyo, Japan.
Spero, H. J., and D. W. Lea (1993): Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer: Results from laboratory experiments. Mar. Micropaleontol., 22, 221-234. 10.1016/0377-8398(93)90045-Y
Liu, Z., L. Y. Mesrop, S. K. Hu, and D. A. Caron (2019): Transcriptome of Thalassicolla nucleata holobiont reveals details of a radiolarian symbiotic relationship. Front. Mar. Sci., 6, 284. 10.3389/fmars.2019.00284
Rutherford, S., S. Dʼhondt, and W. Prell (1999): Environmental controls on the geographic distribution of zooplankton diversity. Nature, 400, 749- 753. 10.1038/23449
Stanley, G. D. Jr., and J. H. Lipps (2011): Photosymbiosis: a driving force for reef success and failure. p. 33-60, In Corals and reef crises, collapse and change, Paleontol. Soc. Spec. Pap. 17, edited by G. D. Stanley, Jr., The Paleontological Society.
Edgar, K. M., S. M. Bohaty, S. J. Gibbs, P. F. Sexton, R. D. Norris, and P. A. Wilson (2013): Symbiont “bleaching” in planktic foraminifera during the Middle Eocene Climatic Optimum. Geology, 41, 15–18. 10.1130/G33388.1
Yasuhara, M., D. P. Tittensor, H. Hillebrand, and B. Worm (2017): Combining marine macroecology and palaeoecology in understanding biodiversity: Microfossils as a model. Biol. Rev., 92, 199-215. 10.1111/brv.12223
Faber, W.W. Jr., O. R. Anderson, J. L. Lindsey, and D. A. Caron (1988): Algal–foraminiferal symbiosis in the planktonic foraminifer Globigerinella aequilateralis. I. Occurrence and stability of two mutually exclusive chrysophyte endosymbionts and their ultrastructure. J. Foram. Res., 18, 334–343. 10.2113/gsjfr.18.4.334
Berger, W. H., J. S. Killingley, and E. Vincent (1978): Stable isotopes in deep‐sea carbonates: box core ERDC‐92, west Equatorial Pacific. Oceanol. Acta, 1, 203–216.
Stoecker, D. K., M. D. Johnson, C. de Vargas, and F. Not (2009): Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol., 57, 279-310. 10.3354/ame01340
Takagi, H
References_xml
SSID ssib000937274
ssib007290002
ssib023157864
ssib003110794
ssib020484261
ssib051812003
ssib002223778
ssib020475145
Score 2.3511891
Snippet ...
SourceID jstage
SourceType Publisher
StartPage 17
SubjectTerms FRR法
光共生
光合成
浮遊性有孔虫
炭素安定同位体比
Title 光共生を行う浮遊性有孔虫類の海洋生態学的研究
URI https://www.jstage.jst.go.jp/article/kaiyou/32/2/32_17/_article/-char/ja
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 海の研究, 2023/03/15, Vol.32(2), pp.17-35
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9MwNBqdhLggECC-tQM-piR27NjHuEs1ceC0SbtFcZpIFGlDaD3AiSKKNMYJ9QJCwC4ghDYJicEPqppu_4JnJ01T1MOYVFkvjt-zX5_r957r92xZ98Csx5nyOrZwYmF7GchCxYljqyRNlEtjjymT7fMhW9vwHmzSzaVz52unlno7qpk8XxhXchapQh3IVUfJ_odkK6JQATDIF0qQMJSnkjEKKeLwESUgXRT6SHhItFFIEMdIYBRyFLiIt0wNAAyFDEmKghCFwtQEuoY7KPA1IFolwWBVkwJ0IVAgdWOgI8KSjkY3dKTBkmCTylrvzAxMlnQCZl4FiHsaCBxDGQCBJKvbxzWaVS8L28McMSOSSPBy1AHX88V0jTUKjBxYk259YwMTfbKrCO00U9HgAmE6JdJaxFbFhIdkC_iob3C6zOakXOtTU6cv4AKt49D6-j_bX63c8GIxL4JKS7OgSKryr8KhAusgisfxo2fbvSbBTRxNseaSeJdTJCoaRgRHWBeuH03f6CC7qAuW_jL2BfUb1nIgV2W7vvMEpuZcDDPxa6nYiHbka2srOE1a202fseP5tPYPss7XrL3n6pm4sHbPXGeqLT_HXCxefZFFzlPN8v15hsF664IvMz0HaUyz9UvWxdKnWgkKHi9bS934iiXHg93x4Odk-Hn08t3x_ttR_3V-dHjSf5O_-JZ_3B0fDI_f_zjZ_zTqH-ZHf_Jfe9AyH-yND75OPryafBlOvv--am20w_XWml1eGGJ3Qa_EthCpcIUCzlgiYiY8GhMvxr7KlKMyHa6EcQc0WOZxkmCuj9f6MUkcyhVVlHFyzWpsbW-l160V5icYdFnq6y2QjkgV62QgF-6mlMUEJzcsXrAcPSmywkSnFvHNs6Pesi7Mfim3rcbO0156B4ziHXW3nC9_AWDimfg
link.rule.ids 315,786,790,27957,27958
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%85%89%E5%85%B1%E7%94%9F%E3%82%92%E8%A1%8C%E3%81%86%E6%B5%AE%E9%81%8A%E6%80%A7%E6%9C%89%E5%AD%94%E8%99%AB%E9%A1%9E%E3%81%AE%E6%B5%B7%E6%B4%8B%E7%94%9F%E6%85%8B%E5%AD%A6%E7%9A%84%E7%A0%94%E7%A9%B6&rft.jtitle=%E6%B5%B7%E3%81%AE%E7%A0%94%E7%A9%B6&rft.au=%E9%AB%98%E6%9C%A8%2C+%E6%82%A0%E8%8A%B1&rft.date=2023-03-15&rft.pub=%E6%97%A5%E6%9C%AC%E6%B5%B7%E6%B4%8B%E5%AD%A6%E4%BC%9A&rft.issn=0916-8362&rft.eissn=2186-3105&rft.volume=32&rft.issue=2&rft.spage=17&rft.epage=35&rft_id=info:doi/10.5928%2Fkaiyou.32.2_17&rft.externalDocID=article_kaiyou_32_2_32_17_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8362&client=summon