Discriminating Between Computer-Generated Facial Images and Natural Ones Using Smoothness Property and Local Entropy

Discriminating between computer-generated images and natural ones is a crucial problem in digital image forensics. Facial images belong to a special case of this problem. Advances in technology have made it possible for computers to generate realistic multimedia contents that are very difficult to d...

Full description

Saved in:
Bibliographic Details
Published inDigital-Forensics and Watermarking pp. 39 - 50
Main Authors Nguyen, Huy H., Nguyen-Son, Hoang-Quoc, Nguyen, Thuc D., Echizen, Isao
Format Book Chapter
LanguageEnglish
Japanese
Published Cham Springer International Publishing 2016
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Discriminating between computer-generated images and natural ones is a crucial problem in digital image forensics. Facial images belong to a special case of this problem. Advances in technology have made it possible for computers to generate realistic multimedia contents that are very difficult to distinguish from non-computer generated contents. This could lead to undesired applications such as face spoofing to bypass authentication systems and distributing harmful unreal images or videos on social media. We have created a method for identifying computer-generated facial images that works effectively for both frontal and angled images. It can also be applied to extracted video frames. This method is based on smoothness property of the faces presented by edges and human skin’s characteristic via local entropy. Experiments demonstrated that performance of the proposed method is better than that of state-of-the-art approaches.
AbstractList Discriminating between computer-generated images and natural ones is a crucial problem in digital image forensics. Facial images belong to a special case of this problem. Advances in technology have made it possible for computers to generate realistic multimedia contents that are very difficult to distinguish from non-computer generated contents. This could lead to undesired applications such as face spoofing to bypass authentication systems and distributing harmful unreal images or videos on social media. We have created a method for identifying computer-generated facial images that works effectively for both frontal and angled images. It can also be applied to extracted video frames. This method is based on smoothness property of the faces presented by edges and human skin’s characteristic via local entropy. Experiments demonstrated that performance of the proposed method is better than that of state-of-the-art approaches.
Author Nguyen-Son, Hoang-Quoc
Nguyen, Huy H.
Nguyen, Thuc D.
Echizen, Isao
Author_xml – sequence: 1
  givenname: Huy H.
  surname: Nguyen
  fullname: Nguyen, Huy H.
  email: honghuy127@gmail.com
  organization: VNUHCM - University of Science, Ho Chi Minh City, Vietnam
– sequence: 2
  givenname: Hoang-Quoc
  surname: Nguyen-Son
  fullname: Nguyen-Son, Hoang-Quoc
  email: nshquoc@nii.ac.jp
  organization: SOKENDAI (The Graduate University for Advanced Studies), Kanagawa, Japan
– sequence: 3
  givenname: Thuc D.
  surname: Nguyen
  fullname: Nguyen, Thuc D.
  email: ndthuc@fit.hcmus.edu.vn
  organization: VNUHCM - University of Science, Ho Chi Minh City, Vietnam
– sequence: 4
  givenname: Isao
  surname: Echizen
  fullname: Echizen, Isao
  email: iechizen@nii.ac.jp
  organization: National Institute of Informatics, Tokyo, Japan
BookMark eNotkMFOAjEQhqtiIiBP4GVfoNpud9vtURGQhIiJcm6621lchJa0JYa3tyCHZvJ_M5203wD1rLOA0AMlj5QQ8SRFhRlmVJ4OJ7hUxRUaJcpSPqPyGvUppxQzVsgbNLg0Skl6qE8YybEUBbtDgxA2hJBcyLyP4msXGt_tOqtjZ9fZC8RfAJuN3W5_iODxDCx4HcFkU910epvNd3oNIdPWZO86HnxCS5vAKpzuf-6ci98ph-zDuz34eDyPLlyTBic2Jni8R7et3gYYXeoQraaTr_EbXixn8_HzAm-oqAosW0bq9AswlOWNNnVel0I0nKZQsaptC1GBaHnVljk3xPC6ZBJMDU3JTas5GyL6vzfsfXoceFU79xMUJerkVCV7iqnkSJ0FquSU_QFTlGle
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2016
Copyright_xml – notice: Springer International Publishing Switzerland 2016
DOI 10.1007/978-3-319-31960-5_4
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319319605
3319319604
EISSN 1611-3349
Editor Kim, Hyoung Joong
Shi, Yun-Qing
Pérez-González, Fernando
Echizen, Isao
Editor_xml – sequence: 1
  givenname: Yun-Qing
  surname: Shi
  fullname: Shi, Yun-Qing
  email: shi@njit.edu
– sequence: 2
  givenname: Hyoung Joong
  surname: Kim
  fullname: Kim, Hyoung Joong
  email: khj@korea.ac.kr
– sequence: 3
  givenname: Fernando
  surname: Pérez-González
  fullname: Pérez-González, Fernando
  email: fperez@gts.uvigo.es
– sequence: 4
  givenname: Isao
  surname: Echizen
  fullname: Echizen, Isao
  email: ichizen@nii.ac.jp
EndPage 50
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-j1784-9f30b331ed132cadb2b577c612ca838ff478e7f68f526d0d6b539edbec56dfa63
ISBN 3319319590
9783319319599
ISSN 0302-9743
IngestDate Wed Nov 06 06:24:23 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j1784-9f30b331ed132cadb2b577c612ca838ff478e7f68f526d0d6b539edbec56dfa63
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_319_31960_5_4
PublicationCentury 2000
PublicationDate 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Security and Cryptology
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 14th International Workshop, IWDW 2015, Tokyo, Japan, October 7-10, 2015, Revised Selected Papers
PublicationTitle Digital-Forensics and Watermarking
PublicationYear 2016
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, United Kingdom
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, United Kingdom
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: CNB H 104.2, ETH Zürich, Zürich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madr, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: Fakultät Informatik, TU Dortmund, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatic, Saarbrücken, Germany
SSID ssj0002792
ssj0001657902
Score 2.0792737
Snippet Discriminating between computer-generated images and natural ones is a crucial problem in digital image forensics. Facial images belong to a special case of...
SourceID springer
SourceType Publisher
StartPage 39
SubjectTerms Computer-generated image
Face spoofing
Facial image
Image forensics
Title Discriminating Between Computer-Generated Facial Images and Natural Ones Using Smoothness Property and Local Entropy
URI http://link.springer.com/10.1007/978-3-319-31960-5_4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECYcdyk69I2mL3DoVIOBZOrlIUPbOFAD120Rp80mkBTptkAsIJaG5Nf3jqQs2e6SLoJBSxZ1_PzpeLz7SMi7OBXCCF0yqULFotBEDLyQmImUZ5qXgVR264Qv8yS_iM4u48vBoK8Q3NTySN3-s67kf0YV2mBcsUr2DiO7-VFogM8wvnCEEYbjjvO7HWb1uSxL3PCD4eaaq3UrtvxTWK61EfBNoHfZ3Dh2yZubUX603c7O3cJ7XonVkn1vKrV_3eJXo0YnmwunmKnnvvm8FlUfdie_kYcwv8bmU3_0aWDt5hHMyVyjm3sqnNDHlUCZCez7XDgRkK9AvyOXy3B-VQGULB1_w2WD69rpRc3wFTyaYpq9l0RAg-v18cyvicyr2qaabe7cslg_zBHuhjnaMOdOoLSL1W3NizkQC0fZnEmPTjlwP8yeHJ1qR_cJijhyJ5rqKdxpK3lnwIni7r1m-pklWAWGPBawuIgOyAEQ3pDc-zA9m_3ogn1JnE6CTtcMVRvd8pbrEhYdtV32QmTdI2y0spwc8s4d91bwrWO0eEQeYLEMxSoWMNhjMtCrJ-Rha3Pqbf6U1Nu4oB4XdB8X1OGCOlxQGGzqcUERF9Tigna4oC0u7KkWF9Tj4hm5OJ0uPuXMb_jB_oRpBixheCDhwXUZ8rESpRzLOE0VOOFKZDwzJkoznZokM_E4KYMykTGf6BJoKE5KIxL-nAxX1Uq_IDRUqR4nJlQmUpGIIxEFEyMlTE8kTpHHh-R9a7YC_8LrotXvBhsXvAD7FtbGBdj45V1OfkXud_h9TYb1daPfgONay7ceFn8Bb62V0Q
link.rule.ids 779,780,784,793,27925
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Digital-Forensics+and+Watermarking&rft.au=Nguyen%2C+Huy+H.&rft.au=Nguyen-Son%2C+Hoang-Quoc&rft.au=Nguyen%2C+Thuc+D.&rft.au=Echizen%2C+Isao&rft.atitle=Discriminating+Between+Computer-Generated+Facial+Images+and+Natural+Ones+Using+Smoothness+Property+and+Local+Entropy&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2016-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319319599&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=39&rft.epage=50&rft_id=info:doi/10.1007%2F978-3-319-31960-5_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon