RNA ウイルス感染の免疫生物応答 ―HCVを中心にー
一般にウイルス感染は宿主免疫を回避して成立するが、回避機構はウイルスごとに差異がある。RNAウイルスはゲノムも複製産物もパターン分子(PAMP) として宿主のエフェクター(1型インターフェロン(IFN)、サイトカイン、NK細胞活性化、Th1 シフト、細胞障害性Tリンパ球(CTL)の増殖など)を誘導する例が多い。このことはRNA認識の自然免疫が細胞性免疫の起動原になることを示唆する。実際、この過程を阻害する因子が多くのウイルスで発見されている。また、この過程は明らかに樹状細胞の成熟化を介しており、ウイルスRNAは例外を除いて免疫細胞の機能を損なわずに感染免疫を成立させる。樹状細胞はウイルスに障碍...
Saved in:
Published in | ウイルス Vol. 63; no. 2; pp. 135 - 142 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
日本ウイルス学会
2013
|
Online Access | Get full text |
ISSN | 0042-6857 1884-3433 |
DOI | 10.2222/jsv.63.135 |
Cover
Abstract | 一般にウイルス感染は宿主免疫を回避して成立するが、回避機構はウイルスごとに差異がある。RNAウイルスはゲノムも複製産物もパターン分子(PAMP) として宿主のエフェクター(1型インターフェロン(IFN)、サイトカイン、NK細胞活性化、Th1 シフト、細胞障害性Tリンパ球(CTL)の増殖など)を誘導する例が多い。このことはRNA認識の自然免疫が細胞性免疫の起動原になることを示唆する。実際、この過程を阻害する因子が多くのウイルスで発見されている。また、この過程は明らかに樹状細胞の成熟化を介しており、ウイルスRNAは例外を除いて免疫細胞の機能を損なわずに感染免疫を成立させる。樹状細胞はウイルスに障碍されずにRNAセンサーによる非自己RNAの検知とエフェクター誘導を行う必要がある。即ち感染細胞内で起きるRNA認識(内因性識別系)と非感染樹状細胞で起きるRNA認識(外因性識別系)は異なる目的に収束する。本総説ではHCVを例にとり、この2つの系に関わる最近の知見を解説し、新規分子の機能に言及する。 |
---|---|
AbstractList | 一般にウイルス感染は宿主免疫を回避して成立するが、回避機構はウイルスごとに差異がある。RNAウイルスはゲノムも複製産物もパターン分子(PAMP) として宿主のエフェクター(1型インターフェロン(IFN)、サイトカイン、NK細胞活性化、Th1 シフト、細胞障害性Tリンパ球(CTL)の増殖など)を誘導する例が多い。このことはRNA認識の自然免疫が細胞性免疫の起動原になることを示唆する。実際、この過程を阻害する因子が多くのウイルスで発見されている。また、この過程は明らかに樹状細胞の成熟化を介しており、ウイルスRNAは例外を除いて免疫細胞の機能を損なわずに感染免疫を成立させる。樹状細胞はウイルスに障碍されずにRNAセンサーによる非自己RNAの検知とエフェクター誘導を行う必要がある。即ち感染細胞内で起きるRNA認識(内因性識別系)と非感染樹状細胞で起きるRNA認識(外因性識別系)は異なる目的に収束する。本総説ではHCVを例にとり、この2つの系に関わる最近の知見を解説し、新規分子の機能に言及する。 |
Author | 松本, 美佐子 押海, 裕之 瀬谷, 司 |
Author_xml | – sequence: 1 fullname: 瀬谷, 司 organization: 北海道大学大学院医学研究科 免疫学分野 – sequence: 1 fullname: 松本, 美佐子 organization: 北海道大学大学院医学研究科 免疫学分野 – sequence: 1 fullname: 押海, 裕之 organization: 北海道大学大学院医学研究科 免疫学分野 |
BookMark | eNo9kEFLAkEcxYcwyMxLn8AvsDYz_52ZnUMHkcpACqK6LrPjbLmYxa4E3XK1Q4cuZZ0CLxGE2Lkg8Ls06X6NjKJ3eA9-hwfvLaNc-7RtEFoluEznWouS8zKHMgG2gPLE81wHXIAcymPsUod7TCyhYpI0A4yxZNKjLI8qezuVkk2fbfpkeyObvs_6w9nwznZfp1c32cMoGwyz65fp5DEbD0qfl_e16qFNb7_extNJz3ZHtvexghZD1UpM8S8L6GBzY79ac-q7W9vVSt2JiBDKMVpJN-RAMA0DYTSWusGM5xFFuQIAzbjgWDQkFUwCSEUaOtQyoFxyTmgABbT-2xslHXVk_LO4eaLiC1_FnaZuGX--3ufg0x-bX_DP9bGK_UjBNy4xaSE |
ContentType | Journal Article |
Copyright | 2013 日本ウイルス学会 |
Copyright_xml | – notice: 2013 日本ウイルス学会 |
DOI | 10.2222/jsv.63.135 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1884-3433 |
EndPage | 142 |
ExternalDocumentID | article_jsv_63_2_63_135_article_char_ja |
GroupedDBID | 2WC ABJNI ACGFS ACPRK ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK F5P JSF KQ8 OK1 RJT |
ID | FETCH-LOGICAL-j177a-eca94f63102fb7ec09cd5e881a26a333c567607d92759339a1dcfc9b2696612b3 |
ISSN | 0042-6857 |
IngestDate | Wed Sep 03 06:28:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j177a-eca94f63102fb7ec09cd5e881a26a333c567607d92759339a1dcfc9b2696612b3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jsv/63/2/63_135/_article/-char/ja |
PageCount | 8 |
ParticipantIDs | jstage_primary_article_jsv_63_2_63_135_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2013 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationTitle | ウイルス |
PublicationTitleAlternate | ウイルス |
PublicationYear | 2013 |
Publisher | 日本ウイルス学会 |
Publisher_xml | – name: 日本ウイルス学会 |
References | 17) Pichlmair A, Schulz O, Tan CP, Nslund TI, Liljestrm P, Weber F, Reis e Sousa C. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science. 314(5801):997-1001. 2006. 6) Sasai M, Shingai M, Funami K, Yoneyama M, Fujita T, Matsumoto M, Seya T. NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J Immunol. 177(12):8676-83. 2006. 4) Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol. 4(2):161-7. 2003. 18) Matsumoto, M., H. Oshiumi, T. Seya. Antiviral responses induced by the TLR3 pathway. Rev. Med. Virol. 21: 6777. 2011. 2) Nagata S, Mantei N, Weissmann C. The structure of one of the eight or more distinct chromosomal genes for human interferon-alpha. Nature. 287(5781):401-8. 1980. 42) Oshiumi, H., M. Matsumoto, S. Hatakeyama, T. Seya. Riplet/RNF135, a RING-finger protein, ubiquitinates RIG-I to promote interferon-b induction during the early phase of viral infection. J. Biol. Chem. 284: 807-817. 2009. 14) Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 207(6):1247-60. 2010. 47) Wang N, Liang Y, Devaraj S, Wang J, Lemon SM, Li K. Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells. J Virol. 83(19): 9824-34. 2009. 37) Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature. 454(7203): 523-7. 2008. 48) Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 8(4):279-89. 2008. 22) Ebihara, T., M. Azuma, H. Oshiumi, J. Kasamatsu, K. Iwabuchi, K. Matsumoto, H. Saito, T. Taniguchi, M. Matsumoto, T. Seya. Identification of a polyI:C-inducible membrane protein, that participates in dendritic cell-mediated natural killer cell activation. J. Exp. Med. 207: 2675-2687. 2010. 30) Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science. 315(5817):1398-401. 2007. 21) Akazawa T., M. Okuno, Y. Okuda, K. Tsujimura, T. Takahashi, M. Ikawa, M. Okabe, T. Ebihara, M, Shingai, N. Inoue, M. Tanaka-Okamoto, H. Ishizaki, J. Miyoshi, M. Matsumoto, T. Seya. Antitumor NK activation induced by the Toll-like receptor3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc. Natl. Acad. Sci. USA. 104: 252-257. 2007. 44) Tu Z, Bozorgzadeh A, Pierce RH, Kurtis J, Crispe IN, Orloff MS. TLR-dependent cross talk between human Kupffer cells and NK cells. J Exp Med. 205(1):233-44. 2008. 25) Ebihara, T., M. Shingai, M. Matsumoto, T. Wakita, T. Seya. Hepatitis C virus (HCV)-infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells. Hepatology. 48: 48-58. 2008. 8) Zhang Z, Kim T, Bao M, Facchinetti V, Jung SY, Ghaffari AA, Qin J, Cheng G, Liu YJ. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity. 34(6):866-78. 2011. 50) Lee J, Sayed N, Hunter A, Au KF, Wong WH, Mocarski ES, Pera RR, Yakubov E, Cooke JP. Activation of innate immunity is required for efficient nuclear reprogramming. Cell. 151(3): 547-58. 2012. 49) Seya, T., M. Azuma, M. Matsumoto. Targeting TLR3 with no RIG-I/MDA5 activation is effective in immunotherapy for cancer. Exp Opn Ther Targets. 17: 533-544. 2013. 10) Schulz O, Diebold SS, Chen M, Nslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljestrm P, Reis e Sousa C. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature. 433(7028):887-92. 2005. 41) Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, Farzan M, Inoue S, Jung JU, Garca-Sastre A. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe. 5(5):439-49. 2009. 11) Azuma M, Ebihara T, Oshiumi H, Matsumoto M, Seya T. Cross-priming for antitumor CTL induced by soluble Ag + polyI:C depends on the TICAM-1 pathway in mouse CD11c(+)/CD8 α(+) dendritic cells. Oncoimmunol. 1(5):581-592. 2012. 9) Kasamatsu J, Oshiumi H, Matsumoto M, Kasahara M, Seya T. Phylogenetic and expression analysis of lamprey toll-like receptors. Dev Comp Immunol. 34(8):855-65. 2010. 13) Belz GT, Smith CM, Eichner D, Shortman K, Karupiah G, Carbone FR, Heath WR. Cutting edge: conventional CD8 alpha+ dendritic cells are generally involved in priming CTL immunity to viruses. J Immunol. 172(4):1996-2000. 2004. 36) Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science. 300(5622):1148-51. 2003. 31) Azuma M., T. Ebihara, H. Oshiumi, M. Matsumoto, T. Seya. Cross-presentation and antitumor CTL induced by soluble Ag + polyI:C largely depend on the TICAM-1 pathway in mouse CD11c+/CD8a+ dendritic cells. OncoImmunol. 1: 581-594. 2012. 5) Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 6(10):981-8. 2005. 7) Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 441(7089):101-5. 2006. 19) Seya, T., K. Funami, M. Taniguchi, M. Matsumoto. Antibodies against human Toll-like receptors (TLRs): TLR distribution and localization in human dendritic cells. J. Innate Immun. 11: 369-374. 2005. 26) Li J, Liu K, Liu Y, Xu Y, Zhang F, Yang H, Liu J, Pan T, Chen J, Wu M, Zhou X, Yuan Z. Exosomes mediate the cell-to-cell transmission of IFN-β-induced antiviral activity. Nat. Immunol. 14: 793-805, 2013. 1) Taniguchi T, Mantei N, Schwarzstein M, Nagata S, Muramatsu M, Weissmann C. Human leukocyte and fibroblast interferons are structurally related. Nature. 285(5766):547-9. 1980. 34) Matsumoto, M., S. Kikkawa, M. Kohase, K. Miyake, T. Seya. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun. 293: 1364-1369. 2002. 45) Nakamura, M., K. Funami, A. Komori, T. Yokoyama, Y. Aiba, A. Araki, Y. Takii, M. Ito, M. Matsuyama, M. Koyabu, K. Migita, K. Taniguchi, H. Fujioka, H. Yatsuhashi, M. Matsumoto, H. Ishibashi, T. Seya. Increased expression of Toll-like receptor3 in intrahepatic biliary epithelial cells at sites of ductular reaction in diseased livers. Hepatology Int. 2: 222-230. 2008. 24) Takaki H., M. Takeda M. Tahara, M. Shingai, H. Oshiumi, M. Matsumoto, T. Seya. MyD88 pathway in murine CD4+ and plasmacytoid dendritic cells triggers interferon-b production leading to protection against measles in a murine model. J. Immunol. 191(9): 4740-7. 2013. 27) Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 424(6950):743-8. 2003. 29) Tatematsu M, Seya T, Matsumoto M. Beyond double-stranded RNA: TLR3 signaling in RNA-induced immune responses. Biochem. J. (in press). 16) Hornung V, Ellegast J, Kim S, Brzzka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G. 5'-Triphosphate RNA is the ligand for RIG-I. Science. 314(5801):994-7. 2006. 33) Tatematsu, M., F. Nishikawa, T. Seya, M. Matsumoto. Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat Commun. 4: 1833. 2013. 43) Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A. 102(49): 17717-22. 2005. 39) Kato H, Takahasi K, Fujita T. RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev. 243(1):91-8. 2011. 32) Yoneyama M, Onomoto K, Fujita T. Cytoplasmic recognition of RNA. Adv Drug Deliv Rev. 60(7):841-6. 2008. 15) Rathinam VA, Fitzgerald KA. Cytosolic surveillance and antiviral immunity. Curr Opin Virol. 1(6):455-62. 2011. 12) Smyth K, Garcia K, Sun Z, Tuo W, Xiao Z. TLR agonists are highly effective at eliciting functional memory CTLs of effector memory phenotype in peptide immunization. Int Immunopharmacol. 15(1): 67-72. 2013. 20) Seya, T., H. Shime, H. Takaki, H. Oshiumi, M. Matsumoto. TLR3/TICAM-1 signaling in RIP3 tumor necroptosis. OncoImmunol. 1: 917-923. 2012. 28) Watanabe, A., M. Tatematsu, K. Saeki, S. Shibata, H. Shime, A. Yoshimura, C. Obuse, T. Seya, M. Matsumoto. Raftlin is involved in the nucleocapture complex to induce poly(I:C)-mediated TLR3 activation. J. Biol. Chem. 86: 10702-10711. 2011. 3) Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17(4):1087-95. 1998. 35) Matsuo, A., H. Oshiumi, T. Tsujita, H. Mitani, H. Kasai, M. Yoshimizu, M. Matsumoto, T. Seya. Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses. J. Immunol. 181: 3474-3485. 2008. 40) Oshiumi, H., M. Miyashita, M. Matsumoto, T. Seya. A distinct role of Riplet-mediated K63-linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog. 9 (8): e1003533. 2013. 23) McCartney S, Vermi W, Gilfillan S, Cella M, Murphy TL, Schreiber RD, Murphy KM, Colonna M. Distinct and complementary functions of MDA5 and TLR3 in poly(I:C)-mediated activation of mouse NK cells. J Exp Med. 206( |
References_xml | – reference: 50) Lee J, Sayed N, Hunter A, Au KF, Wong WH, Mocarski ES, Pera RR, Yakubov E, Cooke JP. Activation of innate immunity is required for efficient nuclear reprogramming. Cell. 151(3): 547-58. 2012. – reference: 9) Kasamatsu J, Oshiumi H, Matsumoto M, Kasahara M, Seya T. Phylogenetic and expression analysis of lamprey toll-like receptors. Dev Comp Immunol. 34(8):855-65. 2010. – reference: 11) Azuma M, Ebihara T, Oshiumi H, Matsumoto M, Seya T. Cross-priming for antitumor CTL induced by soluble Ag + polyI:C depends on the TICAM-1 pathway in mouse CD11c(+)/CD8 α(+) dendritic cells. Oncoimmunol. 1(5):581-592. 2012. – reference: 31) Azuma M., T. Ebihara, H. Oshiumi, M. Matsumoto, T. Seya. Cross-presentation and antitumor CTL induced by soluble Ag + polyI:C largely depend on the TICAM-1 pathway in mouse CD11c+/CD8a+ dendritic cells. OncoImmunol. 1: 581-594. 2012. – reference: 38) Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature. 446(7138): 916-920. 2007. – reference: 33) Tatematsu, M., F. Nishikawa, T. Seya, M. Matsumoto. Toll-like receptor 3 recognizes incomplete stem structures in single-stranded viral RNA. Nat Commun. 4: 1833. 2013. – reference: 8) Zhang Z, Kim T, Bao M, Facchinetti V, Jung SY, Ghaffari AA, Qin J, Cheng G, Liu YJ. DDX1, DDX21, and DHX36 helicases form a complex with the adaptor molecule TRIF to sense dsRNA in dendritic cells. Immunity. 34(6):866-78. 2011. – reference: 15) Rathinam VA, Fitzgerald KA. Cytosolic surveillance and antiviral immunity. Curr Opin Virol. 1(6):455-62. 2011. – reference: 28) Watanabe, A., M. Tatematsu, K. Saeki, S. Shibata, H. Shime, A. Yoshimura, C. Obuse, T. Seya, M. Matsumoto. Raftlin is involved in the nucleocapture complex to induce poly(I:C)-mediated TLR3 activation. J. Biol. Chem. 86: 10702-10711. 2011. – reference: 10) Schulz O, Diebold SS, Chen M, Nslund TI, Nolte MA, Alexopoulou L, Azuma YT, Flavell RA, Liljestrm P, Reis e Sousa C. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature. 433(7028):887-92. 2005. – reference: 14) Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V, Vulink AJ, Hart DN, Radford KJ. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 207(6):1247-60. 2010. – reference: 16) Hornung V, Ellegast J, Kim S, Brzzka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G. 5'-Triphosphate RNA is the ligand for RIG-I. Science. 314(5801):994-7. 2006. – reference: 4) Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol. 4(2):161-7. 2003. – reference: 36) Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science. 300(5622):1148-51. 2003. – reference: 2) Nagata S, Mantei N, Weissmann C. The structure of one of the eight or more distinct chromosomal genes for human interferon-alpha. Nature. 287(5781):401-8. 1980. – reference: 13) Belz GT, Smith CM, Eichner D, Shortman K, Karupiah G, Carbone FR, Heath WR. Cutting edge: conventional CD8 alpha+ dendritic cells are generally involved in priming CTL immunity to viruses. J Immunol. 172(4):1996-2000. 2004. – reference: 39) Kato H, Takahasi K, Fujita T. RIG-I-like receptors: cytoplasmic sensors for non-self RNA. Immunol Rev. 243(1):91-8. 2011. – reference: 29) Tatematsu M, Seya T, Matsumoto M. Beyond double-stranded RNA: TLR3 signaling in RNA-induced immune responses. Biochem. J. (in press). – reference: 46) Wang B, Trippler M, Pei R, Lu M, Broering R, Gerken G, Schlaak JF. Toll-like receptor activated human and murine hepatic stellate cells are potent regulators of hepatitis C virus replication. J Hepatol. 51(6):1037-45. 2009. – reference: 22) Ebihara, T., M. Azuma, H. Oshiumi, J. Kasamatsu, K. Iwabuchi, K. Matsumoto, H. Saito, T. Taniguchi, M. Matsumoto, T. Seya. Identification of a polyI:C-inducible membrane protein, that participates in dendritic cell-mediated natural killer cell activation. J. Exp. Med. 207: 2675-2687. 2010. – reference: 41) Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, Farzan M, Inoue S, Jung JU, Garca-Sastre A. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe. 5(5):439-49. 2009. – reference: 1) Taniguchi T, Mantei N, Schwarzstein M, Nagata S, Muramatsu M, Weissmann C. Human leukocyte and fibroblast interferons are structurally related. Nature. 285(5766):547-9. 1980. – reference: 40) Oshiumi, H., M. Miyashita, M. Matsumoto, T. Seya. A distinct role of Riplet-mediated K63-linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog. 9 (8): e1003533. 2013. – reference: 20) Seya, T., H. Shime, H. Takaki, H. Oshiumi, M. Matsumoto. TLR3/TICAM-1 signaling in RIP3 tumor necroptosis. OncoImmunol. 1: 917-923. 2012. – reference: 3) Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 17(4):1087-95. 1998. – reference: 18) Matsumoto, M., H. Oshiumi, T. Seya. Antiviral responses induced by the TLR3 pathway. Rev. Med. Virol. 21: 6777. 2011. – reference: 17) Pichlmair A, Schulz O, Tan CP, Nslund TI, Liljestrm P, Weber F, Reis e Sousa C. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science. 314(5801):997-1001. 2006. – reference: 7) Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 441(7089):101-5. 2006. – reference: 5) Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 6(10):981-8. 2005. – reference: 23) McCartney S, Vermi W, Gilfillan S, Cella M, Murphy TL, Schreiber RD, Murphy KM, Colonna M. Distinct and complementary functions of MDA5 and TLR3 in poly(I:C)-mediated activation of mouse NK cells. J Exp Med. 206(13):2967-76. 2009. – reference: 32) Yoneyama M, Onomoto K, Fujita T. Cytoplasmic recognition of RNA. Adv Drug Deliv Rev. 60(7):841-6. 2008. – reference: 45) Nakamura, M., K. Funami, A. Komori, T. Yokoyama, Y. Aiba, A. Araki, Y. Takii, M. Ito, M. Matsuyama, M. Koyabu, K. Migita, K. Taniguchi, H. Fujioka, H. Yatsuhashi, M. Matsumoto, H. Ishibashi, T. Seya. Increased expression of Toll-like receptor3 in intrahepatic biliary epithelial cells at sites of ductular reaction in diseased livers. Hepatology Int. 2: 222-230. 2008. – reference: 47) Wang N, Liang Y, Devaraj S, Wang J, Lemon SM, Li K. Toll-like receptor 3 mediates establishment of an antiviral state against hepatitis C virus in hepatoma cells. J Virol. 83(19): 9824-34. 2009. – reference: 48) Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol. 8(4):279-89. 2008. – reference: 21) Akazawa T., M. Okuno, Y. Okuda, K. Tsujimura, T. Takahashi, M. Ikawa, M. Okabe, T. Ebihara, M, Shingai, N. Inoue, M. Tanaka-Okamoto, H. Ishizaki, J. Miyoshi, M. Matsumoto, T. Seya. Antitumor NK activation induced by the Toll-like receptor3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc. Natl. Acad. Sci. USA. 104: 252-257. 2007. – reference: 25) Ebihara, T., M. Shingai, M. Matsumoto, T. Wakita, T. Seya. Hepatitis C virus (HCV)-infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells. Hepatology. 48: 48-58. 2008. – reference: 6) Sasai M, Shingai M, Funami K, Yoneyama M, Fujita T, Matsumoto M, Seya T. NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J Immunol. 177(12):8676-83. 2006. – reference: 30) Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science. 315(5817):1398-401. 2007. – reference: 34) Matsumoto, M., S. Kikkawa, M. Kohase, K. Miyake, T. Seya. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem. Biophys. Res. Commun. 293: 1364-1369. 2002. – reference: 49) Seya, T., M. Azuma, M. Matsumoto. Targeting TLR3 with no RIG-I/MDA5 activation is effective in immunotherapy for cancer. Exp Opn Ther Targets. 17: 533-544. 2013. – reference: 24) Takaki H., M. Takeda M. Tahara, M. Shingai, H. Oshiumi, M. Matsumoto, T. Seya. MyD88 pathway in murine CD4+ and plasmacytoid dendritic cells triggers interferon-b production leading to protection against measles in a murine model. J. Immunol. 191(9): 4740-7. 2013. – reference: 12) Smyth K, Garcia K, Sun Z, Tuo W, Xiao Z. TLR agonists are highly effective at eliciting functional memory CTLs of effector memory phenotype in peptide immunization. Int Immunopharmacol. 15(1): 67-72. 2013. – reference: 26) Li J, Liu K, Liu Y, Xu Y, Zhang F, Yang H, Liu J, Pan T, Chen J, Wu M, Zhou X, Yuan Z. Exosomes mediate the cell-to-cell transmission of IFN-β-induced antiviral activity. Nat. Immunol. 14: 793-805, 2013. – reference: 27) Hoebe K, Du X, Georgel P, Janssen E, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, Crozat K, Sovath S, Han J, Beutler B. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature. 424(6950):743-8. 2003. – reference: 37) Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature. 454(7203): 523-7. 2008. – reference: 44) Tu Z, Bozorgzadeh A, Pierce RH, Kurtis J, Crispe IN, Orloff MS. TLR-dependent cross talk between human Kupffer cells and NK cells. J Exp Med. 205(1):233-44. 2008. – reference: 35) Matsuo, A., H. Oshiumi, T. Tsujita, H. Mitani, H. Kasai, M. Yoshimizu, M. Matsumoto, T. Seya. Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses. J. Immunol. 181: 3474-3485. 2008. – reference: 42) Oshiumi, H., M. Matsumoto, S. Hatakeyama, T. Seya. Riplet/RNF135, a RING-finger protein, ubiquitinates RIG-I to promote interferon-b induction during the early phase of viral infection. J. Biol. Chem. 284: 807-817. 2009. – reference: 19) Seya, T., K. Funami, M. Taniguchi, M. Matsumoto. Antibodies against human Toll-like receptors (TLRs): TLR distribution and localization in human dendritic cells. J. Innate Immun. 11: 369-374. 2005. – reference: 43) Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A. 102(49): 17717-22. 2005. |
SSID | ssib000959825 ssib002809730 ssib007290146 ssib058494566 ssj0038190 ssib000972806 ssib002821791 |
Score | 1.9242728 |
Snippet | 一般にウイルス感染は宿主免疫を回避して成立するが、回避機構はウイルスごとに差異がある。RNAウイルスはゲノムも複製産物もパターン分子(PAMP) として宿主のエフェクター(1型インターフェロン(IFN)、サイトカイン、NK細胞活性化、Th1... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 135 |
Title | RNA ウイルス感染の免疫生物応答 ―HCVを中心にー |
URI | https://www.jstage.jst.go.jp/article/jsv/63/2/63_135/_article/-char/ja |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ウイルス, 2013/12/25, Vol.63(2), pp.135-142 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANNSK4EX8xG_24JxK1kxmMh_HZJtSFAtKK71ImHwsuIcquhX0ZHf14MGLVk_CXkSQUs8KQv-Lsd2_4ZuZbDYVD2thGd6-vJd5L2-SeS-Z98ZxbhRd7CuYGV1PFKlLMVauynHqSlUQrAqVylQnJ99ZYctr9NZ6sD537EFj1dJmP21nL_6ZV3IUqwIO7KqzZP_DsvVJAQEw2BdasDC0M9n43kq4gGKChI9CNgGoAQgKowoTSRQzJCiSSxqAVhJzCKMwRnGABPwWUcyRZIYLAEvMkZAolJomAq6OxoSLcHRhskYiWO7cr7qRPoopioSmsAyi7iaqZKr20a6c4VlEnwwII4yHQpBBoMhDEdeDw0i_BJ1OyUDBRRTFBuhoekPGNUrERkJQwNOMWhOvyShCEFADUVCfH9QhoKZhlEhEzbckNr3VjGjTHVycYNrvTHYxUmgaqruWYXMSob7LhK2r3S7svCEEdQm1NT0mE0v15H7YiO_tLIFthZbK4cC2vNjfcxk4bro2bu_pszYj7ZrlUG3wauQlQJQwkvi6AcpkgteZe0kPwofjPudYr3i9fbfhfUtdvbEZzeq9yg59dJe8EV1CdK6L2db_ufkGX9ODKyupiQ6sI6TfBdQZYPp62erAWq-bU63A8-tBHDRZQ2ncutXTzqkqHmuFVpUzzlxPnXVO2B1an59zQrjFWuXgSzn4XA53ysGPg1ejg9H7cuvb_uu344874-3R-M3X_b1P493t1q-XH-B2KAfvfn_f3d8blls75fDneWdtKV7tLLvVriNuD3Ou3CJTknYZhD1-N-VF5sksDwohsPKZIoRkAePM47n0eSAJkQrnWTeTqc8k-Lp-Si448xuPNoqLTkvRXBGVkVRA1AGBkRJZkGY5xaLwKKb5JYdZ3ZPHtrRMMqNBLx-V8Ypz0jf7ueh3iFed-f6TzeIaeNX99LoZG38AFA6j1w |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RNA+%E3%82%A6%E3%82%A4%E3%83%AB%E3%82%B9%E6%84%9F%E6%9F%93%E3%81%AE%E5%85%8D%E7%96%AB%E7%94%9F%E7%89%A9%E5%BF%9C%E7%AD%94+%E2%80%95HCV%E3%82%92%E4%B8%AD%E5%BF%83%E3%81%AB%E3%83%BC&rft.jtitle=%E3%82%A6%E3%82%A4%E3%83%AB%E3%82%B9&rft.au=%E7%80%AC%E8%B0%B7%2C+%E5%8F%B8&rft.au=%E6%9D%BE%E6%9C%AC%2C+%E7%BE%8E%E4%BD%90%E5%AD%90&rft.au=%E6%8A%BC%E6%B5%B7%2C+%E8%A3%95%E4%B9%8B&rft.date=2013&rft.pub=%E6%97%A5%E6%9C%AC%E3%82%A6%E3%82%A4%E3%83%AB%E3%82%B9%E5%AD%A6%E4%BC%9A&rft.issn=0042-6857&rft.eissn=1884-3433&rft.volume=63&rft.issue=2&rft.spage=135&rft.epage=142&rft_id=info:doi/10.2222%2Fjsv.63.135&rft.externalDocID=article_jsv_63_2_63_135_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0042-6857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0042-6857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0042-6857&client=summon |