熱プラズマを用いたナノ粒子の作製

Saved in:
Bibliographic Details
Published in混相流 Vol. 38; no. 4; pp. 372 - 379
Main Author 中村, 圭太郎
Format Journal Article
LanguageJapanese
Published 日本混相流学会 15.12.2024
Subjects
Online AccessGet full text
ISSN0914-2843
1881-5790
DOI10.3811/jjmf.2024.T014

Cover

Loading…
Author 中村, 圭太郎
Author_xml – sequence: 1
  fullname: 中村, 圭太郎
  organization: 株式会社日清製粉グループ本社 技術本部 生産技術研究所
BookMark eNo9jz1Lw1AYhS9SwVi7-i8S75v7kZtR6icUXOp8uUneaEJbJeni2EYcHKQUwUV0cNFBQUehv-Yq8WdoUFzOGc7DgWeVtEYnIyRkHajHFMBGng9Tz6c-9_oU-BJxQClwRRDSFnFoCNz1FWcrpFOWWUR_OMWF9B1C64tXW93Y6slO3211Z6fz-vrRTs7t5N5Wl7a6qt_mn88zO3n5WNx-PSzWyHJqBiV2_rpNDne2-909t3ewu9_d7Lk5CA4uSowMcuonQghI0tAAV5KbAGMZGxZEiCr0mUEpUqSAEU0ARBwHyIJUGsnaZOv3Ny_H5gj1aZENTXGmTTHO4gHqRlgzpXkTjbhuxP_n-NgUOjfsG5cCZFU
ContentType Journal Article
Copyright 2024 日本混相流学会
Copyright_xml – notice: 2024 日本混相流学会
DOI 10.3811/jjmf.2024.T014
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1881-5790
EndPage 379
ExternalDocumentID article_jjmf_38_4_38_2024_T014_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
ARCSS
CS3
JSF
KQ8
OK1
RJT
TUS
ID FETCH-LOGICAL-j1541-e6ebae402d5551df9a14864a7ec6ca37bee8923ae65fe01eb0d115cc7e37f6a63
ISSN 0914-2843
IngestDate Thu Feb 06 17:45:49 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j1541-e6ebae402d5551df9a14864a7ec6ca37bee8923ae65fe01eb0d115cc7e37f6a63
OpenAccessLink https://www.jstage.jst.go.jp/article/jjmf/38/4/38_2024.T014/_article/-char/ja
PageCount 8
ParticipantIDs jstage_primary_article_jjmf_38_4_38_2024_T014_article_char_ja
PublicationCentury 2000
PublicationDate 2024/12/15
PublicationDateYYYYMMDD 2024-12-15
PublicationDate_xml – month: 12
  year: 2024
  text: 2024/12/15
  day: 15
PublicationDecade 2020
PublicationTitle 混相流
PublicationYear 2024
Publisher 日本混相流学会
Publisher_xml – name: 日本混相流学会
References [1] Athanassiou, E. K., Grass, R. N., Stark, W. J., Chemical Aerosol Engineering as a Novel Tool for Material Science: From Oxides to Salt and Metal Nanoparticles, Aerosol Sci. Technol., Vol. 44, 161-172 (2010).
[24] Lee, H. J., Eguchi, K., Yoshida, T., Preparation of Ultrafine Silicon Nitride, and Silicon Nitride and Silicon Carbide Mixed Powders in a Hybrid Plasma, J. Am. Ceram. Soc., Vol. 73, 3356-3362 (1990).
[26] Tanaka, M., Noda, J., Watanabe, T., Masuno, J., Tsuchiyama, A., Formation mechanism of metal embedded amorphous silicate nanoparticles by induction thermal plasmas, J. Phys., Conf. Ser., Vol. 518, 012025 (2014).
[13] Boulos, M., Plasma Synthesis of Metal Oxide Nanopowder and Apparatus Therefor, WO 2004/052778 (2003).
[27] Ogi, T., Balgis, R., Okuyama, K., Tajima, N., Setyawan H., Influence of Formic Acid on Electrochemical Properties of High-Porosity Pt/TiN Nanoparticle Aggregates, AIChE. J., Vol. 59(8), 2753-2760 (2013).
[9] Pirzada, S., Method of Producing Nanoscale Powders by Quenching of Vapors, US 5788738 (2003).
[21] Ishigaki, T., Oh, S.-M., Li, J.-G., Park, D.-W., Controlling the synthesis of TaC nanopowders by injecting liquid precursor into RF induction plasma, Sci. Technol. Adv. Mater., Vol. 6, 111-118 (2005).
[18] Kodama, N., Tanaka, Y., Kita, K., Uesugi, Y., Ishizima, T., Watanabe, S., Nakamura, K., A synthesis method of large amounts of Al-doped TiO2 nanopowder using pulse-modulated induction thermal plasmas with time-controlled feeding of feedstock, J. Phys. D: Appl. Phys., Vol. 47, 195304 (2014).
[6] Watanabe, T., Nezu, A., Abe, Y., Adachi, K., Formation mechanism of electrically conductive nanoparticles by induction thermal plasmas, Thin Solid Films, Vol. 435, 27-32 (2003).
[14] Baba, K., Shohata, N., Yonezawa, M., Synthesis and properties of ultrafine AIN powder by rf plasma, Applied Physics Letters, Vol. 54, 2309-2311 (1989).
[28] Ishii, S., Nagao, T., Optically excited hot carrier engineering using titanium nitride, Oyo Buturi, Vol. 86(4), 300-304 (2017) (in Japanese)
[29] Ogi, T., Nandiyant, A. B. D., Kisakibaru, Y., Iwaki, T., Nakamura, K., Okuyama, K., Facile synthesis of single-phase spherical α’’-Fe16N2/ Al2O3 core-shell nanoparticles via a gas-phase method, J. Appl. Phys., Vol. 113, 164301 (2013)
[15] Pavlovic, P. B., Kotic, Z. G., Stefanovic, P. L., Thermal Plasma Synthesis of Ultrafine Si3N4 and SiC Ceramic Powders, Materials Science Forum, 214, 205-214 (1996).
[23] Oh, S. M., Park, D. W., Preparation of AlN fine powder by thermal plasma processing, Thin Solid Films, Vol. 316, 189-194 (1998).
[17] Tanaka, Y., Nagumo, T., Sakai, H., Uesugi, Y., Sakai, Y., Nakamura, K., Nanoparticle synthesis using high-powered pulse-modulated induction thermal plasma, J. Phys. D: Appl. Phys., Vol. 43, 265201 (2010).
[7] Ulrich, G. D., Theory of Particle Formation and Growth in Oxide Synthesis Flames, Combustion Sci. Tech., Vol. 4, 47-57 (1971).
[19] Tanaka, Y., Tsubokawa, Y., Uesaka, Y., Uesugi, Y., Development of a quasi-direct temperature control system of modulated induction thermal plasmas for advanced material processing, Plasma Sources Sci. Techhol., Vol. 22, 065016 (2013).
[8] Udaka, M., Kawasaki, K., Yamazaki, T., Umemoto, M., Okane, I., Influence of Process Conditions on the Size of Ultrafine Ni Particles Produced by Thermal Plasma Method, J. Japan Inst. Metals, Vol. 58, 683-690 (1994) (in Japanese).
[4] Xiong, H. B., Zheng, L. L., Melting, Oxidation, Evaporation of Particle in-Flight in Plasma Spray Processes, J. Mater. Sci. Technol., Vol. 19, 49-52 (2003).
[2] Seto, T., Synthesis of Nanoparticles by Laser Ablation, J. Soc. Powder Technol., Japan, Vol. 42(1), 39-44 (2005) (in Japanese).
[5] Girshick, S. L., Chi, O. P., McMurry, P. H., Modelling Particle Formation and Growth in a Plasma Synthesis Reactor, Plasma Chem. Plasma Process, Vol. 8, 145-157 (1988).
[3] Kim, S. K., Couillard, M., Tand, Z., Shin, H., Poitras, D., Cheng, C., Naboka, O., Ruth, D., Plunkett, M., Chen, L., Gaburici, L., Lacelle, T., Nganbe, M., Zou, Y., Continuous synthesis of high-entropy alloy nanoparticles by in-flight alloying of elemental metals, Nature Commun., Vol. 15, 1450 (2024).
[16] Tanaka, Y., Tsuke, T., Guo, W., Uesugi, Y., Ishijima, T., Watanabe, S., Nakamura, K., A large amount synthesis of nanopowder using modulated induction thermal plasmas synchronized with intermittent feeding of raw materials, J. Phys.:Conference Series, Vol. 406, 1-10 (2012).
[22] Nakamura, K., Synthesis of Nanoparticles by Thermal Plasma Processing and Its Applicaitons, Earozoru Kenkyu, Vol. 29(2), 98-103 (2014) (in Japanese).
[11] George, C., Candler, G., Pfender, E., Heberleih , J., Nozzle optimization for dissociated species transport in low pressure plasma chemical vapor deposition, Plasma Chemistry and Plasma Processing, Vol. 16, 43S-56S (1996).
[10] Taylor, P. R., Zhu, W., Manrique, M., Plasma synthesis of nano-particulate metals experimental and theoretical investigation of rapid quenching of metal vapors, Processing and Properties of Nanocrystalline Materials. TMS, Warrendale, PA., 69-80 (1996).
[20] Nakamura, K., Sakai, Y., Synthesis of Nanoparticles by Thermal Plasma Method and Its Applications, J. Automotive Engineers, Vol. 72(6), 112-119 (2018) (in Japanese).
[25] Nakamura, K., Kinoshita, A., Watanabe, S., Uemura, N., Takahashi, K., One-step synthesis of magnetic metal-ceramic core-shell nanoparticles by RF thermal plasma, J. Soc. Powder Technol., Japan, Vol. 50, 495-501 (2013) (in Japanese).
[12] Taylor, P. R., Zhu, W., Plasma synthesis of nano-sized metallic powders using a de-Laval nozzle for quench, Processing and Properties of Nanocrystalline Materials. TMS, Warrendale, PA., 297-311 (1998).
References_xml – reference: [13] Boulos, M., Plasma Synthesis of Metal Oxide Nanopowder and Apparatus Therefor, WO 2004/052778 (2003).
– reference: [15] Pavlovic, P. B., Kotic, Z. G., Stefanovic, P. L., Thermal Plasma Synthesis of Ultrafine Si3N4 and SiC Ceramic Powders, Materials Science Forum, 214, 205-214 (1996).
– reference: [11] George, C., Candler, G., Pfender, E., Heberleih , J., Nozzle optimization for dissociated species transport in low pressure plasma chemical vapor deposition, Plasma Chemistry and Plasma Processing, Vol. 16, 43S-56S (1996).
– reference: [21] Ishigaki, T., Oh, S.-M., Li, J.-G., Park, D.-W., Controlling the synthesis of TaC nanopowders by injecting liquid precursor into RF induction plasma, Sci. Technol. Adv. Mater., Vol. 6, 111-118 (2005).
– reference: [22] Nakamura, K., Synthesis of Nanoparticles by Thermal Plasma Processing and Its Applicaitons, Earozoru Kenkyu, Vol. 29(2), 98-103 (2014) (in Japanese).
– reference: [17] Tanaka, Y., Nagumo, T., Sakai, H., Uesugi, Y., Sakai, Y., Nakamura, K., Nanoparticle synthesis using high-powered pulse-modulated induction thermal plasma, J. Phys. D: Appl. Phys., Vol. 43, 265201 (2010).
– reference: [1] Athanassiou, E. K., Grass, R. N., Stark, W. J., Chemical Aerosol Engineering as a Novel Tool for Material Science: From Oxides to Salt and Metal Nanoparticles, Aerosol Sci. Technol., Vol. 44, 161-172 (2010).
– reference: [2] Seto, T., Synthesis of Nanoparticles by Laser Ablation, J. Soc. Powder Technol., Japan, Vol. 42(1), 39-44 (2005) (in Japanese).
– reference: [8] Udaka, M., Kawasaki, K., Yamazaki, T., Umemoto, M., Okane, I., Influence of Process Conditions on the Size of Ultrafine Ni Particles Produced by Thermal Plasma Method, J. Japan Inst. Metals, Vol. 58, 683-690 (1994) (in Japanese).
– reference: [27] Ogi, T., Balgis, R., Okuyama, K., Tajima, N., Setyawan H., Influence of Formic Acid on Electrochemical Properties of High-Porosity Pt/TiN Nanoparticle Aggregates, AIChE. J., Vol. 59(8), 2753-2760 (2013).
– reference: [16] Tanaka, Y., Tsuke, T., Guo, W., Uesugi, Y., Ishijima, T., Watanabe, S., Nakamura, K., A large amount synthesis of nanopowder using modulated induction thermal plasmas synchronized with intermittent feeding of raw materials, J. Phys.:Conference Series, Vol. 406, 1-10 (2012).
– reference: [19] Tanaka, Y., Tsubokawa, Y., Uesaka, Y., Uesugi, Y., Development of a quasi-direct temperature control system of modulated induction thermal plasmas for advanced material processing, Plasma Sources Sci. Techhol., Vol. 22, 065016 (2013).
– reference: [18] Kodama, N., Tanaka, Y., Kita, K., Uesugi, Y., Ishizima, T., Watanabe, S., Nakamura, K., A synthesis method of large amounts of Al-doped TiO2 nanopowder using pulse-modulated induction thermal plasmas with time-controlled feeding of feedstock, J. Phys. D: Appl. Phys., Vol. 47, 195304 (2014).
– reference: [12] Taylor, P. R., Zhu, W., Plasma synthesis of nano-sized metallic powders using a de-Laval nozzle for quench, Processing and Properties of Nanocrystalline Materials. TMS, Warrendale, PA., 297-311 (1998).
– reference: [9] Pirzada, S., Method of Producing Nanoscale Powders by Quenching of Vapors, US 5788738 (2003).
– reference: [20] Nakamura, K., Sakai, Y., Synthesis of Nanoparticles by Thermal Plasma Method and Its Applications, J. Automotive Engineers, Vol. 72(6), 112-119 (2018) (in Japanese).
– reference: [7] Ulrich, G. D., Theory of Particle Formation and Growth in Oxide Synthesis Flames, Combustion Sci. Tech., Vol. 4, 47-57 (1971).
– reference: [14] Baba, K., Shohata, N., Yonezawa, M., Synthesis and properties of ultrafine AIN powder by rf plasma, Applied Physics Letters, Vol. 54, 2309-2311 (1989).
– reference: [29] Ogi, T., Nandiyant, A. B. D., Kisakibaru, Y., Iwaki, T., Nakamura, K., Okuyama, K., Facile synthesis of single-phase spherical α’’-Fe16N2/ Al2O3 core-shell nanoparticles via a gas-phase method, J. Appl. Phys., Vol. 113, 164301 (2013)
– reference: [25] Nakamura, K., Kinoshita, A., Watanabe, S., Uemura, N., Takahashi, K., One-step synthesis of magnetic metal-ceramic core-shell nanoparticles by RF thermal plasma, J. Soc. Powder Technol., Japan, Vol. 50, 495-501 (2013) (in Japanese).
– reference: [23] Oh, S. M., Park, D. W., Preparation of AlN fine powder by thermal plasma processing, Thin Solid Films, Vol. 316, 189-194 (1998).
– reference: [28] Ishii, S., Nagao, T., Optically excited hot carrier engineering using titanium nitride, Oyo Buturi, Vol. 86(4), 300-304 (2017) (in Japanese)
– reference: [4] Xiong, H. B., Zheng, L. L., Melting, Oxidation, Evaporation of Particle in-Flight in Plasma Spray Processes, J. Mater. Sci. Technol., Vol. 19, 49-52 (2003).
– reference: [24] Lee, H. J., Eguchi, K., Yoshida, T., Preparation of Ultrafine Silicon Nitride, and Silicon Nitride and Silicon Carbide Mixed Powders in a Hybrid Plasma, J. Am. Ceram. Soc., Vol. 73, 3356-3362 (1990).
– reference: [5] Girshick, S. L., Chi, O. P., McMurry, P. H., Modelling Particle Formation and Growth in a Plasma Synthesis Reactor, Plasma Chem. Plasma Process, Vol. 8, 145-157 (1988).
– reference: [3] Kim, S. K., Couillard, M., Tand, Z., Shin, H., Poitras, D., Cheng, C., Naboka, O., Ruth, D., Plunkett, M., Chen, L., Gaburici, L., Lacelle, T., Nganbe, M., Zou, Y., Continuous synthesis of high-entropy alloy nanoparticles by in-flight alloying of elemental metals, Nature Commun., Vol. 15, 1450 (2024).
– reference: [10] Taylor, P. R., Zhu, W., Manrique, M., Plasma synthesis of nano-particulate metals experimental and theoretical investigation of rapid quenching of metal vapors, Processing and Properties of Nanocrystalline Materials. TMS, Warrendale, PA., 69-80 (1996).
– reference: [6] Watanabe, T., Nezu, A., Abe, Y., Adachi, K., Formation mechanism of electrically conductive nanoparticles by induction thermal plasmas, Thin Solid Films, Vol. 435, 27-32 (2003).
– reference: [26] Tanaka, M., Noda, J., Watanabe, T., Masuno, J., Tsuchiyama, A., Formation mechanism of metal embedded amorphous silicate nanoparticles by induction thermal plasmas, J. Phys., Conf. Ser., Vol. 518, 012025 (2014).
SSID ssib002484562
ssib000961619
ssib005901927
ssj0069034
Score 2.376254
SourceID jstage
SourceType Publisher
StartPage 372
SubjectTerms Aerosol
Classification
Core-Shell
Material synthesis
Nanoparticle
Thermal plasma
Title 熱プラズマを用いたナノ粒子の作製
URI https://www.jstage.jst.go.jp/article/jjmf/38/4/38_2024.T014/_article/-char/ja
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 混相流, 2024/12/15, Vol.38(4), pp.372-379
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29ixQxFA_L2WghfuI3V5hyzplJJh-Fxcw6x6EoCHtw3ZDZyRQLniJ7jd3eHldYiByCjWhho4WClsL9M46y_hm-l8zujYeIp7CEx0vy8rIvk_xeSF4IuS4rjOsGH2ANVMCrCr45Xeug5jYJGZcA8XFD_-49sbbOb28kG73e186ppa1xuTJ88tt7Jf9iVeCBXfGW7BEsuxAKDKDBvpCChSH9KxvTXFIlaBbRnFHFqJYtkWpHxDRL51l5y9Ex1tKcpspxIqp4S-jVtrCa11I5Fs58rYSmt6gO28IpZHGaAadPc0VTBnQX6dIcFJP4w-YyminHSahaGNkJUCgVcjRIitDg2BDIRC60CHqCMtor092iiF0gRH9J0w0qJ0TSNHEECOj_QYW2N6lwOvSpTrt7lhEPYD31M6L1M7ZSUZBI_-bofEpnqjN0eWd-Zv6doHapZ_4dm8OrCIAYt4qMHmCM15ivDEJ_0fVQZO7W7gUWLJgqOCZYocAKxTwbr88VI8Dwx2JwZfCVjTv3OxBYCwDdXYiq0Ck9mCM1gvDFJoLQoTspsfgrfCBSVPnGrwoDpBqBgzE_nOjw0uAUOdk6OsupV-806Y3MGXKiE_7yLAlnu5-a6ctm-r7Z_tJMXzfbe7MX75rJTjN500yfNtNns8973z88byYfv-2_-vF2_xxZX80H_bWgfcEjGAE0jwIrbGksD-MqAWRe1dqA9y24kXYohobJ0loFHoaxIqltGNkyrMBDGQ6lZbIWRrDzZGnz4aa9QJZNFRmTWKa5MTxUtoTOg6sD5W2owCe-SG767haPfJiW4mjmufSf9S-T4wdD_wpZGj_eslcBr47La87gPwG5wXtL
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%86%B1%E3%83%97%E3%83%A9%E3%82%BA%E3%83%9E%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E3%83%8A%E3%83%8E%E7%B2%92%E5%AD%90%E3%81%AE%E4%BD%9C%E8%A3%BD&rft.jtitle=%E6%B7%B7%E7%9B%B8%E6%B5%81&rft.au=%E4%B8%AD%E6%9D%91%2C+%E5%9C%AD%E5%A4%AA%E9%83%8E&rft.date=2024-12-15&rft.pub=%E6%97%A5%E6%9C%AC%E6%B7%B7%E7%9B%B8%E6%B5%81%E5%AD%A6%E4%BC%9A&rft.issn=0914-2843&rft.eissn=1881-5790&rft.volume=38&rft.issue=4&rft.spage=372&rft.epage=379&rft_id=info:doi/10.3811%2Fjjmf.2024.T014&rft.externalDocID=article_jjmf_38_4_38_2024_T014_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-2843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-2843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-2843&client=summon