Cryogenic Wind Tunnel

In order to get high Reynolds number flows in a wind tunnel, it is the best way to use a gas of small kinematic viscosity by making temperature lower and pressure higher in the closed wind tunnel. About 20 of cryogenic wind tunnels are being used in the world. In this report, at first, its principle...

Full description

Saved in:
Bibliographic Details
Published inJournal of Japan Society of Fluid Mechanics Vol. 11; no. 1; pp. 14 - 23
Main Author ADACHI, Tsutomu
Format Journal Article
LanguageJapanese
Published The Japan Society of Fluid Mechanics 1992
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to get high Reynolds number flows in a wind tunnel, it is the best way to use a gas of small kinematic viscosity by making temperature lower and pressure higher in the closed wind tunnel. About 20 of cryogenic wind tunnels are being used in the world. In this report, at first, its principle, structure and characteristics are described. Then a look of several representative ones in the world are given. The status of researches using cryogenic wind tunnels are also described.
AbstractList In order to get high Reynolds number flows in a wind tunnel, it is the best way to use a gas of small kinematic viscosity by making temperature lower and pressure higher in the closed wind tunnel. About 20 of cryogenic wind tunnels are being used in the world. In this report, at first, its principle, structure and characteristics are described. Then a look of several representative ones in the world are given. The status of researches using cryogenic wind tunnels are also described.
Author ADACHI, Tsutomu
Author_xml – sequence: 1
  fullname: ADACHI, Tsutomu
  organization: Institute of Engineering Mechanics, University of Tsukuba
BookMark eNpFj0tLAzEUhYNUcKxdunDXPzA19-Z1s5ShPqDgpuIy3MnEccqYSqYu-u8VLLo5B74DH5xLMcv7nIS4AbkC0GhvM_dcEnjCH7ACfSYqBDK19oAzUUkkWysw-kIspmlopTTGkiSoxHVTjvs-5SEuX4fcLbdfOafxSpy_8Tilxann4uV-vW0e683zw1Nzt6l3oEnXxiIrVt6StzG1mr1XSF3XSt0aJB0doUMyKVrnPXUg2UUTfQfYOi-dmov1r3c3HbhP4bMMH1yOgcthiGMK_78CQIBT6L89vnMJKatvc8pKqA
ContentType Journal Article
Copyright The Japan Society of Fluid Mechanics
Copyright_xml – notice: The Japan Society of Fluid Mechanics
DOI 10.11426/nagare1982.11.14
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2185-4912
EndPage 23
ExternalDocumentID article_nagare1982_11_1_11_1_14_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j1484-562a3a396896ceb4a99328ddb04b5284c7827285ec67998d10a7c5c9d12b79073
ISSN 0286-3154
IngestDate Wed Apr 05 12:58:04 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j1484-562a3a396896ceb4a99328ddb04b5284c7827285ec67998d10a7c5c9d12b79073
OpenAccessLink https://www.jstage.jst.go.jp/article/nagare1982/11/1/11_1_14/_article/-char/en
PageCount 10
ParticipantIDs jstage_primary_article_nagare1982_11_1_11_1_14_article_char_en
PublicationCentury 1900
PublicationDate 1992
PublicationDateYYYYMMDD 1992-01-01
PublicationDate_xml – year: 1992
  text: 1992
PublicationDecade 1990
PublicationTitle Journal of Japan Society of Fluid Mechanics
PublicationTitleAlternate NAGARE
PublicationYear 1992
Publisher The Japan Society of Fluid Mechanics
Publisher_xml – name: The Japan Society of Fluid Mechanics
References 3) CRYO Newsletter, No.4, June, (NASA 1990).
8) X. Bouis, The European Transonic Windtunnel (ETW), AGARD-Report-774 (1989), 6-1-16.
13) M. C. Lewis, Aerofoil Testing in a Self-Streaming Flexible Walled Wind Tunnel, NASA Contractor Report 4128 (1988), 1-257.
5) S. Balakrishna and W. A. kilgore, Microcomputer Based Controller for the Langley 0.3-Meter Transonic Cryogenic Tunnel, NASA Controller Report 181808 (March-1989), 1-147.
9) A. Seraudie, J-P. Archambaud, A. Blanchard and J-B. Dor, T2 Cryogenic Transonic Wind Tunnel Thermal Design and Control of the Facility Including Models Adapted for Short Run Processing, ASME / JSME Thermal Engineering Proceedings Vol. 5 (1991-3), 379-386.
10) A. M. Clausing, Advantages of a Cryogenic Environment for Experimental Investigations of Convective Heat Transfer, Int. J. Heat Mass Transfer, 25-8 (1982), 1255-1257.
12) H. Försching, E. Melzer and G. Schewe, Ein neuer Windkanal für gebäudeaerodynamische und-aeroelastische Untersuchungen bei Reynoldszahlen bis 107, Konstruktiver Ingenieurbau Berichte, Heft 35/36, 1981,127-133.
6) A. L. Iskra, N. K. Mikhailov, A. P. Philatov and V. P. Rukavets, TsAGI Cryogenic Transonic Wind Tunnel T-134, ASME/JSME Thermal Engineering Proceedings Vol. 5 (1991-3), 387-391.
2) T. Adachi, K. Matsuuchi and T. Kawai, High Reynolds Number Flow Experiments using Cryogenic Wind Tunnel, ASME/JSME Thermal Engineering Proceedings, Vol. 5 (1991-3), 371-378.
11) G. Hefer, The Cryogenic Ludwig Tube Tunnel At Göttingen, AGARD Report-774 (1989), 8-1-7.
4) J. F. Campbell, The National Transonic Facility-A Research Perspective, AIAA-84-2150 (1984), 1-7.
14) 安達勤, 小野博基, 松内一雄, 河合達雄, 長哲夫, 高レイノルズ数領域における円柱まわりの流れ (表面粗さの影響), 日本機械学会論文集 (B編) 55-511 (1989-3), 685-691.
1) P. L. Lawing, R. L. Kilgore and P. D. McGuire, Cryogenic Wind Tunnels for High Reynolds Number Testing, NASA T. M. 87743 (1986-5), 1-89.
7) A. I. Omelaev and A. M. Kharitonov, A Cooling System In Transonic Cryogenic Wind Tunnel Being Under Construction At Institute Of Theoretical And Applied Mechanics, ASME/JSME Thermal Engineering Proceedings Vol. 5 (1991-3), 409-413.
15) 安達勤, 小野博基, 松内一雄, 河合達雄, 長哲夫, 高レイノルズ数領域における円柱の抵抗と発生うず例 (表面粗さの影響), 日本機械学会論文集 (B編) 55-517 (1989-9), 2597-2601.
References_xml
SSID ssib005568081
ssib000953428
ssib023157515
ssj0000744169
Score 1.3814378
Snippet In order to get high Reynolds number flows in a wind tunnel, it is the best way to use a gas of small kinematic viscosity by making temperature lower and...
SourceID jstage
SourceType Publisher
StartPage 14
SubjectTerms Cryogenic wind tunnel
High Reynolds number flow
Title Cryogenic Wind Tunnel
URI https://www.jstage.jst.go.jp/article/nagare1982/11/1/11_1_14/_article/-char/en
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Japan Society of Fluid Mechanics, 1992/03/30, Vol.11(1), pp.14-23
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA86L178Fr_pwZt0rm3SNhdhTGUOJggTvJUmacGhnWztQf96f2m6bn6B00sYr1tI83t7-b3kvRdCTn1dZZ_qI38Rw0ERMrW5Cjh8nlbKhQtr6Ols5P6t372nvQf2MLulr8wuyUVTvn2bV_IXVCEDrjpLdgFk604hwGfgixYIo_0Vxp3x6wgPHyX-3Jk6GxQ6aOUHutnDqpjVQZoQXD8Vj-qsn-jU37mQ9_Zlu9O9KWGcFPnouZjtC-gY0hrDMqfsN30aK-OGPgyxqeTcTEoZln1mU-58NJPOF3UwNs-hc6unSR7-apdpeZVkFuu7ex0euhA1pz_8UO66msxo9lU4KZFTNTSaPtdJadCBZbLi6hJ_-jj-bo5YcubNO1a6zlprlmELUqvPm1i9GwciBWZa-krT-aiOwPXIzz-PG3RlCPI-Dfwruchgg6xVqFptM8hNsjSMt8h65VBYlbmebJOdWkEsrSCWUZAdcn99Neh07eoeDHsIZ5XaoKixF3vcD7kvE0FjcEo3VEq0qGCgFxIsL3BDlkg_gPesnFYcSCa5clwRcNjwXdLIRlmyRyylQjBMj_lpCM8-xTQpljqCp2mYBtLz98mFebHoxRQ7iRbE4-C_HRySVRMRrXe5jkgjHxfJMXhfLk5KiN8BMKhUdw
link.rule.ids 315,783,787,4033,27937,27938,27939
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cryogenic+Wind+Tunnel&rft.jtitle=Journal+of+Japan+Society+of+Fluid+Mechanics&rft.au=ADACHI%2C+Tsutomu&rft.date=1992&rft.pub=The+Japan+Society+of+Fluid+Mechanics&rft.issn=0286-3154&rft.eissn=2185-4912&rft.volume=11&rft.issue=1&rft.spage=14&rft.epage=23&rft_id=info:doi/10.11426%2Fnagare1982.11.14&rft.externalDocID=article_nagare1982_11_1_11_1_14_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0286-3154&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0286-3154&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0286-3154&client=summon