Timesaving for Conformational Analysis by Machine Learning

In the conformational analysis of [Mg(dmso)6]2+ complex cation (dmso: dimethylsulfoxide), 130 candidates of the conformers were successfully narrowed down to 26 conformers by machine learning. As a result, the time required for the structural optimization turned out to be reduced to 1/8, and the mac...

Full description

Saved in:
Bibliographic Details
Published inJournal of Computer Chemistry, Japan Vol. 18; no. 3; pp. 150 - 151
Main Author SAKIYAMA, Hiroshi
Format Journal Article
LanguageJapanese
Published Society of Computer Chemistry, Japan 2019
Subjects
Online AccessGet full text
ISSN1347-1767
1347-3824
DOI10.2477/jccj.2019-0020

Cover

Abstract In the conformational analysis of [Mg(dmso)6]2+ complex cation (dmso: dimethylsulfoxide), 130 candidates of the conformers were successfully narrowed down to 26 conformers by machine learning. As a result, the time required for the structural optimization turned out to be reduced to 1/8, and the machine learning was found to be effective in timesaving for conformational analysis.
AbstractList In the conformational analysis of [Mg(dmso)6]2+ complex cation (dmso: dimethylsulfoxide), 130 candidates of the conformers were successfully narrowed down to 26 conformers by machine learning. As a result, the time required for the structural optimization turned out to be reduced to 1/8, and the machine learning was found to be effective in timesaving for conformational analysis.
Author SAKIYAMA, Hiroshi
Author_xml – sequence: 1
  fullname: SAKIYAMA, Hiroshi
  organization: Department of Science, Faculty of Science, Yamagata University Kojirakawa 1-4-12, Yamagata 990-8560, Japan
BookMark eNo9kM1qwzAQhEVpoWmaa89-AacrWZbk3kL6Cym9pGexUleJTCIXyxTy9rVp6GW-ZWZZ2Llhl6lLxNgdh6WQWt-33rdLAbwpAQRcsBmvpC4rI-TleeZa6Wu2yDk6ANA18LqZsYdtPFLGn5h2Rej6Yt2lEUccYpfwUKxGOeWYC3cq3tHvY6JiQ9incf-WXQU8ZFqcOWefz0_b9Wu5-Xh5W682ZculGkrvglIkGl4RAQGSNM4EbnC0uQqNUaBlMF9CY3CCc5Sg0DmBvm6IsK7m7PHvbpsH3JH97uMR-5PFfoj-QHZ63XJjq0mmCuxUwX_s99hbStUvu8NY3A
ContentType Journal Article
Copyright 2019 Society of Computer Chemistry, Japan
Copyright_xml – notice: 2019 Society of Computer Chemistry, Japan
DOI 10.2477/jccj.2019-0020
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1347-3824
EndPage 151
ExternalDocumentID article_jccj_18_3_18_2019_0020_article_char_en
GroupedDBID 29K
2WC
ACIWK
ALMA_UNASSIGNED_HOLDINGS
D-I
E3Z
EBS
EJD
GX1
HH5
JSF
JSH
KQ8
OK1
OVT
PQQKQ
RJT
RNS
RZJ
TKC
XSB
ID FETCH-LOGICAL-j146t-cbf66e2913ee0e0ae48b8f18af6616f986074f8d27afb211a406abb2ac59eea53
ISSN 1347-1767
IngestDate Wed Sep 03 06:22:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j146t-cbf66e2913ee0e0ae48b8f18af6616f986074f8d27afb211a406abb2ac59eea53
OpenAccessLink https://www.jstage.jst.go.jp/article/jccj/18/3/18_2019-0020/_article/-char/en
PageCount 2
ParticipantIDs jstage_primary_article_jccj_18_3_18_2019_0020_article_char_en
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationTitle Journal of Computer Chemistry, Japan
PublicationYear 2019
Publisher Society of Computer Chemistry, Japan
Publisher_xml – name: Society of Computer Chemistry, Japan
References [7] H. Sakiyama, J. Comput. Chem. Jpn. Int. Ed., 4, 2018-0013 (2018).
[4] Project Jupyter, 2018 https://jupyter.org/.
[5] TensorFlow, 2018 https://www.tensorflow.org/.
[2] H. Sakiyama, K. Waki, Iranian, J. Math. Chem., 7, 223 (2016).
[3] Anaconda, 2018 https://www.anaconda.com/.
[1] H. Sakiyama, K. Shomura, M. Ito, K. Waki, M. Yamasaki, Dalton Trans., 48, 10174 (2019). , doi:10.1039/C9DT02173F31187849
[6] Keras, 2018 https://keras.io/ 2.0.
References_xml – reference: [2] H. Sakiyama, K. Waki, Iranian, J. Math. Chem., 7, 223 (2016).
– reference: [7] H. Sakiyama, J. Comput. Chem. Jpn. Int. Ed., 4, 2018-0013 (2018).
– reference: [4] Project Jupyter, 2018 https://jupyter.org/.
– reference: [3] Anaconda, 2018 https://www.anaconda.com/.
– reference: [6] Keras, 2018 https://keras.io/ 2.0.
– reference: [5] TensorFlow, 2018 https://www.tensorflow.org/.
– reference: [1] H. Sakiyama, K. Shomura, M. Ito, K. Waki, M. Yamasaki, Dalton Trans., 48, 10174 (2019). , doi:10.1039/C9DT02173F31187849
SSID ssib000750159
ssib001107833
ssj0056974
Score 2.1448581
Snippet In the conformational analysis of [Mg(dmso)6]2+ complex cation (dmso: dimethylsulfoxide), 130 candidates of the conformers were successfully narrowed down to...
SourceID jstage
SourceType Publisher
StartPage 150
SubjectTerms ディープニューラルネットワーク
マシンラーニング
構造予測
正八面体型錯体
配座解析
Title Timesaving for Conformational Analysis by Machine Learning
URI https://www.jstage.jst.go.jp/article/jccj/18/3/18_2019-0020/_article/-char/en
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Computer Chemistry, Japan, 2019, Vol.18(3), pp.150-151
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66HvQiPvFND96k2mfaCB6WRVmV9aKCnkqSJmoPusgq6K93Jmm2uz7A1UsoaVPSfMPMl3QehOwGJZNUSuoLzZifcCZ9lmDaypxKzpIyS03NyN4F7V4nZzfpTRNCYKJLBmJfvn8bV_IXVKEPcMUo2QmQHb4UOuAa8IUWEIb2dxhj_AZ_dc6QGL3nYhFx5V2-EWCYPeMzqVw61bsfOKmr8bDXcXXgrCdtv5Ghy_b56S2ey6PNegAbe_8wenIwopmcQ-gv3mu1YpyYTJLWMqqmL85tAPRXVdrstI1eDG122drEhjbH7GftHSXm_3ElZYU-d8xHLtvYqaH3YL3eBT5YhHkRY4MDChxQuNsYtgZSMk1moiwLTQbg7jhVGqVyuA82dZetFU8py2xB5PrTbcJPnOLB-ASBulRA5J0ToOElVwtkvgbPa9vpLJKpii-R2eE6L5PDRko8EA9vXEo8JyWeePNqKfGclKyQ65Pjq07Xrytm-BVYvIEvhaZURSyMlQpUwFWSi1yHOYfukGqWU2CMOi-jjGsBW38OdI4LEXGZMqV4Gq-S1uPTo1ojnmScsghMkBJZUoZaSBprCXQYKLBmQbROjuxnF32bFqWYDJaNf47fJHMWAjwN2yKtwfOL2gZ-OBA7BugPvxNoIw
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Timesaving+for+Conformational+Analysis+by+Machine+Learning&rft.jtitle=Journal+of+Computer+Chemistry%2C+Japan&rft.au=SAKIYAMA%2C+Hiroshi&rft.date=2019&rft.pub=Society+of+Computer+Chemistry%2C+Japan&rft.issn=1347-1767&rft.eissn=1347-3824&rft.volume=18&rft.issue=3&rft.spage=150&rft.epage=151&rft_id=info:doi/10.2477%2Fjccj.2019-0020&rft.externalDocID=article_jccj_18_3_18_2019_0020_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-1767&client=summon