Timesaving for Conformational Analysis by Machine Learning
In the conformational analysis of [Mg(dmso)6]2+ complex cation (dmso: dimethylsulfoxide), 130 candidates of the conformers were successfully narrowed down to 26 conformers by machine learning. As a result, the time required for the structural optimization turned out to be reduced to 1/8, and the mac...
Saved in:
Published in | Journal of Computer Chemistry, Japan Vol. 18; no. 3; pp. 150 - 151 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
Society of Computer Chemistry, Japan
2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1347-1767 1347-3824 |
DOI | 10.2477/jccj.2019-0020 |
Cover
Abstract | In the conformational analysis of [Mg(dmso)6]2+ complex cation (dmso: dimethylsulfoxide), 130 candidates of the conformers were successfully narrowed down to 26 conformers by machine learning. As a result, the time required for the structural optimization turned out to be reduced to 1/8, and the machine learning was found to be effective in timesaving for conformational analysis. |
---|---|
AbstractList | In the conformational analysis of [Mg(dmso)6]2+ complex cation (dmso: dimethylsulfoxide), 130 candidates of the conformers were successfully narrowed down to 26 conformers by machine learning. As a result, the time required for the structural optimization turned out to be reduced to 1/8, and the machine learning was found to be effective in timesaving for conformational analysis. |
Author | SAKIYAMA, Hiroshi |
Author_xml | – sequence: 1 fullname: SAKIYAMA, Hiroshi organization: Department of Science, Faculty of Science, Yamagata University Kojirakawa 1-4-12, Yamagata 990-8560, Japan |
BookMark | eNo9kM1qwzAQhEVpoWmaa89-AacrWZbk3kL6Cym9pGexUleJTCIXyxTy9rVp6GW-ZWZZ2Llhl6lLxNgdh6WQWt-33rdLAbwpAQRcsBmvpC4rI-TleeZa6Wu2yDk6ANA18LqZsYdtPFLGn5h2Rej6Yt2lEUccYpfwUKxGOeWYC3cq3tHvY6JiQ9incf-WXQU8ZFqcOWefz0_b9Wu5-Xh5W682ZculGkrvglIkGl4RAQGSNM4EbnC0uQqNUaBlMF9CY3CCc5Sg0DmBvm6IsK7m7PHvbpsH3JH97uMR-5PFfoj-QHZ63XJjq0mmCuxUwX_s99hbStUvu8NY3A |
ContentType | Journal Article |
Copyright | 2019 Society of Computer Chemistry, Japan |
Copyright_xml | – notice: 2019 Society of Computer Chemistry, Japan |
DOI | 10.2477/jccj.2019-0020 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1347-3824 |
EndPage | 151 |
ExternalDocumentID | article_jccj_18_3_18_2019_0020_article_char_en |
GroupedDBID | 29K 2WC ACIWK ALMA_UNASSIGNED_HOLDINGS D-I E3Z EBS EJD GX1 HH5 JSF JSH KQ8 OK1 OVT PQQKQ RJT RNS RZJ TKC XSB |
ID | FETCH-LOGICAL-j146t-cbf66e2913ee0e0ae48b8f18af6616f986074f8d27afb211a406abb2ac59eea53 |
ISSN | 1347-1767 |
IngestDate | Wed Sep 03 06:22:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j146t-cbf66e2913ee0e0ae48b8f18af6616f986074f8d27afb211a406abb2ac59eea53 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jccj/18/3/18_2019-0020/_article/-char/en |
PageCount | 2 |
ParticipantIDs | jstage_primary_article_jccj_18_3_18_2019_0020_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationTitle | Journal of Computer Chemistry, Japan |
PublicationYear | 2019 |
Publisher | Society of Computer Chemistry, Japan |
Publisher_xml | – name: Society of Computer Chemistry, Japan |
References | [7] H. Sakiyama, J. Comput. Chem. Jpn. Int. Ed., 4, 2018-0013 (2018). [4] Project Jupyter, 2018 https://jupyter.org/. [5] TensorFlow, 2018 https://www.tensorflow.org/. [2] H. Sakiyama, K. Waki, Iranian, J. Math. Chem., 7, 223 (2016). [3] Anaconda, 2018 https://www.anaconda.com/. [1] H. Sakiyama, K. Shomura, M. Ito, K. Waki, M. Yamasaki, Dalton Trans., 48, 10174 (2019). , doi:10.1039/C9DT02173F31187849 [6] Keras, 2018 https://keras.io/ 2.0. |
References_xml | – reference: [2] H. Sakiyama, K. Waki, Iranian, J. Math. Chem., 7, 223 (2016). – reference: [7] H. Sakiyama, J. Comput. Chem. Jpn. Int. Ed., 4, 2018-0013 (2018). – reference: [4] Project Jupyter, 2018 https://jupyter.org/. – reference: [3] Anaconda, 2018 https://www.anaconda.com/. – reference: [6] Keras, 2018 https://keras.io/ 2.0. – reference: [5] TensorFlow, 2018 https://www.tensorflow.org/. – reference: [1] H. Sakiyama, K. Shomura, M. Ito, K. Waki, M. Yamasaki, Dalton Trans., 48, 10174 (2019). , doi:10.1039/C9DT02173F31187849 |
SSID | ssib000750159 ssib001107833 ssj0056974 |
Score | 2.1448581 |
Snippet | In the conformational analysis of [Mg(dmso)6]2+ complex cation (dmso: dimethylsulfoxide), 130 candidates of the conformers were successfully narrowed down to... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 150 |
SubjectTerms | ディープニューラルネットワーク マシンラーニング 構造予測 正八面体型錯体 配座解析 |
Title | Timesaving for Conformational Analysis by Machine Learning |
URI | https://www.jstage.jst.go.jp/article/jccj/18/3/18_2019-0020/_article/-char/en |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Computer Chemistry, Japan, 2019, Vol.18(3), pp.150-151 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66HvQiPvFND96k2mfaCB6WRVmV9aKCnkqSJmoPusgq6K93Jmm2uz7A1UsoaVPSfMPMl3QehOwGJZNUSuoLzZifcCZ9lmDaypxKzpIyS03NyN4F7V4nZzfpTRNCYKJLBmJfvn8bV_IXVKEPcMUo2QmQHb4UOuAa8IUWEIb2dxhj_AZ_dc6QGL3nYhFx5V2-EWCYPeMzqVw61bsfOKmr8bDXcXXgrCdtv5Ghy_b56S2ey6PNegAbe_8wenIwopmcQ-gv3mu1YpyYTJLWMqqmL85tAPRXVdrstI1eDG122drEhjbH7GftHSXm_3ElZYU-d8xHLtvYqaH3YL3eBT5YhHkRY4MDChxQuNsYtgZSMk1moiwLTQbg7jhVGqVyuA82dZetFU8py2xB5PrTbcJPnOLB-ASBulRA5J0ToOElVwtkvgbPa9vpLJKpii-R2eE6L5PDRko8EA9vXEo8JyWeePNqKfGclKyQ65Pjq07Xrytm-BVYvIEvhaZURSyMlQpUwFWSi1yHOYfukGqWU2CMOi-jjGsBW38OdI4LEXGZMqV4Gq-S1uPTo1ojnmScsghMkBJZUoZaSBprCXQYKLBmQbROjuxnF32bFqWYDJaNf47fJHMWAjwN2yKtwfOL2gZ-OBA7BugPvxNoIw |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Timesaving+for+Conformational+Analysis+by+Machine+Learning&rft.jtitle=Journal+of+Computer+Chemistry%2C+Japan&rft.au=SAKIYAMA%2C+Hiroshi&rft.date=2019&rft.pub=Society+of+Computer+Chemistry%2C+Japan&rft.issn=1347-1767&rft.eissn=1347-3824&rft.volume=18&rft.issue=3&rft.spage=150&rft.epage=151&rft_id=info:doi/10.2477%2Fjccj.2019-0020&rft.externalDocID=article_jccj_18_3_18_2019_0020_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-1767&client=summon |