Safety and risk management of powered exoskeleton for spinal cord injury

The usage of powered exoskeletons has been reported to benefit gait reconstruction in patients with spinal cord injury (SCI). However, few studies have reported on the aspects of safety. We investigated and observed rehabilitation using exoskeleton, and performed a risk analysis for safer exoskeleto...

Full description

Saved in:
Bibliographic Details
Published inJournal of Occupational Safety and Health Vol. 14; no. 1; pp. 15 - 28
Main Authors OYAMA, Hideki, HOJO, Rieko, IKEDA, Hiroyasu
Format Journal Article
LanguageJapanese
Published Tokyo National Institute of Occupational Safety and Health 28.02.2021
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The usage of powered exoskeletons has been reported to benefit gait reconstruction in patients with spinal cord injury (SCI). However, few studies have reported on the aspects of safety. We investigated and observed rehabilitation using exoskeleton, and performed a risk analysis for safer exoskeletons. First, we reviewed reports on adverse events and found a high incidence of skin troubles and device malfunctions but a low incidence of falls. It suggests the usefulness of support from human helpers. Second, gait training using two types of exoskeletons was performed at a rehabilitation center. The falling of a paraplegic patient with an exoskeleton was prevented by the contact assistance and supervision of two physical therapists, thus confirming that safety was dependent on human support. On the other hand, the specific themes of rehabilitation using exoskeletons were also found, such as unstable walking, behaviors suggesting psychological and physical fatigue in physical therapists, and problems of fitting and usability. Finally, the risk assessment results indicated the engineering protective measures to multiple hazards reduced the risk score, but some unavoidable risks, such as falls, remained without the human supports. The development of safer exoskeletons requires comprehensive risk reduction measures through engineering protection and human support which assumed the usage of patients with SCI and their helpers.
AbstractList The usage of powered exoskeletons has been reported to benefit gait reconstruction in patients with spinal cord injury (SCI). However, few studies have reported on the aspects of safety. We investigated and observed rehabilitation using exoskeleton, and performed a risk analysis for safer exoskeletons. First, we reviewed reports on adverse events and found a high incidence of skin troubles and device malfunctions but a low incidence of falls. It suggests the usefulness of support from human helpers. Second, gait training using two types of exoskeletons was performed at a rehabilitation center. The falling of a paraplegic patient with an exoskeleton was prevented by the contact assistance and supervision of two physical therapists, thus confirming that safety was dependent on human support. On the other hand, the specific themes of rehabilitation using exoskeletons were also found, such as unstable walking, behaviors suggesting psychological and physical fatigue in physical therapists, and problems of fitting and usability. Finally, the risk assessment results indicated the engineering protective measures to multiple hazards reduced the risk score, but some unavoidable risks, such as falls, remained without the human supports. The development of safer exoskeletons requires comprehensive risk reduction measures through engineering protection and human support which assumed the usage of patients with SCI and their helpers.
Author HOJO, Rieko
IKEDA, Hiroyasu
OYAMA, Hideki
Author_xml – sequence: 1
  fullname: OYAMA, Hideki
  organization: National Institute of Occupational Safety and Health, Japan
– sequence: 2
  fullname: HOJO, Rieko
  organization: National Institute of Occupational Safety and Health, Japan
– sequence: 3
  fullname: IKEDA, Hiroyasu
  organization: National Institute of Occupational Safety and Health, Japan
BookMark eNo9kNFKwzAUhoNMcM69ggS8jqZJ2qWXMuamDHYxBe9C0p64dl1Skw7d29s68eacc_Hx85_vGo2cd4DQbULvmZDZQ-3j7v5ls10RRhkllCaULBcXaJxIyUk2k--j35uRTDJ2haYxVoZSltGUpmyMVlttoTth7UocqrjHB-30BxzAddhb3PovCFBi-PZxDw103mHrA45t5XSDCx9KXLn6GE436NLqJsL0b0_Q29Pidb4i683yef64JnUiUiC5BFZAkRSpNjPTNwFpxSw3nJdW5MxyaSXknJo8YdSUYKSQmnJrpdQmo5xP0N05tw3-8wixU7U_hr5MVEzkKWVM9NgErc9UHbv-HdWG6qDDSenQVUUDatCmEqGSYQz61KBPDfrUcvGPFTsdFDj-A81WbrI
ContentType Journal Article
Copyright 2020 National Institute of Occupational Safety and Health
Copyright Japan Science and Technology Agency 2021
Copyright_xml – notice: 2020 National Institute of Occupational Safety and Health
– notice: Copyright Japan Science and Technology Agency 2021
DBID 7T2
C1K
DOI 10.2486/josh.JOSH-2020-0010-GE
DatabaseName Health and Safety Science Abstracts (Full archive)
Environmental Sciences and Pollution Management
DatabaseTitle Health & Safety Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Health & Safety Science Abstracts
DeliveryMethod fulltext_linktorsrc
EISSN 1883-678X
EndPage 28
ExternalDocumentID article_josh_14_1_14_JOSH_2020_0010_GE_article_char_en
GroupedDBID ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
7T2
C1K
ID FETCH-LOGICAL-j145e-98e2cec1c5ab7bb00e8f479b33df492f38f8e930b9120bdeb848a03ff88ab6033
ISSN 1882-6822
IngestDate Thu Oct 10 18:59:01 EDT 2024
Wed Apr 05 07:42:58 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j145e-98e2cec1c5ab7bb00e8f479b33df492f38f8e930b9120bdeb848a03ff88ab6033
OpenAccessLink https://www.jstage.jst.go.jp/article/josh/14/1/14_JOSH-2020-0010-GE/_article/-char/en
PQID 2495022460
PQPubID 2048382
PageCount 14
ParticipantIDs proquest_journals_2495022460
jstage_primary_article_josh_14_1_14_JOSH_2020_0010_GE_article_char_en
PublicationCentury 2000
PublicationDate 2021/02/28
PublicationDateYYYYMMDD 2021-02-28
PublicationDate_xml – month: 02
  year: 2021
  text: 2021/02/28
  day: 28
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Occupational Safety and Health
PublicationTitleAlternate Journal of Occupational Safety and Health
PublicationYear 2021
Publisher National Institute of Occupational Safety and Health
Japan Science and Technology Agency
Publisher_xml – name: National Institute of Occupational Safety and Health
– name: Japan Science and Technology Agency
References 18) Kardofaki M. Mechatronics development of a scalable exoskeleton for the lower part of a handicapped person. Thèse de doctorat de l’Université Paris-Saclay préparée à l’Université de Versailles Saint-Quentin-en-Yvelines. 2019.
34) JIS B 8455, ロボット及びロボティックデバイス-生活支援ロボットの安全要求事項.2016; 日本規格協会
2) 高橋明子,梅崎重夫.労働災害による脊髄損傷の発生傾向の分析-労働災害データを対象として-.労働安全衛生研究. 2019; 12(1): 41-50.
21) FDA MAUDE - Manufacturer and User Facility Device Experience. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm. Accessed July 14, 2020.
36) ISO 11228-1Ergonomics - manual handling - part 1: Lifting and carrying. 2003; ISO.
38) ISO 11228-3 Ergonomics - manual handling - part 3: Handling of low loads at high frequency. 2007; ISO.
28) 緒方友登,久原聡志,明日徹,舌間秀雄,和田太.外骨格系歩行アシスト装置(ReWalkTM)の使用にて歩行が可能となった第7胸髄完全損傷症例.理学療法学. 2015; Suppl: O-0757
19) Contreras-Vidal JL, A Bhagat N, Brantley J, Cruz-Garza JG, He Y, Manley Q, et al. Powered exoskeletons for bipedal locomotion after spinal cord injury. J Neural Eng. 2016; 13(3): 1-16.
26) Dolbow DR, Gorgey AS, Daniels JA, Adler RA, Moore JR, Gater DR Jr. The effects of spinal cord injury and exercise on bone mass: a literature review. NeuroRehabilitation. 2011; 29(3): 261-269.
29) 山田義範, 高橋雄平, 駒形忠臣, 古澤一成.脊髄損傷者における外骨格型ロボット装具を用いた歩行について.理学療法学. 2016; Suppl 2: O-NV-07-6.
4) Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, et al. Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil. 2015; 21: 93-99.
30) 横山修,丸谷守保,鳥山貴大,浅井直樹,村田知之,山上大亮.外骨格型ロボット装具ReWalkの効果と安全性について.脊髄障害医学. 2016; Suppl: O1-2-13.
32) G. Chen, C. K. Chan, Z. Guo, H. Yu. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Critical Reviews in Biomedical Engineering. 2013; 41(4-5): 343-363.
1) Shingu H, Ohama M, Ikata T, Katoh S, Akatsu T. A nationwide epidemiological survey of spinal cord injuries in Japan from January 1990 to December 1992. Paraplegia. 1995; 33: 183-188.
17) Tanabe S, Hirano S, Saitoh E. Wearable power-assist locomotor (WPAL) for supporting upright walking in persons with paraplegia. NeuroRehabilitation. 2013; 33(1): 99-106.
25) Read E, Woolsey C, McGibbon CA, O’Connell C. Physiotherapists’ experiences using the Ekso Bionic Exoskeleton with patients in a neurological rehabilitation hospital: A qualitative study. Rehabilitation Research and Practice. 2020; Volume 2020, Article ID 2939573, 8 pages.
16) Tanabe S, Saitoh E, Hirano S, Katoh M, Takemitsu T, Uno A, et al. Design of the wearable power-assist locomotor (WPAL) for paraplegic gait reconstruction. Disabil Rehabil Assist Technol. 2013; 8(1): 84-91.
7) Fuse I, Hirano S, Saitoh E, Otaka Y, Tanabe S, Katoh M, et al. Gait reconstruction using the gait assist robot WPAL in patients with cervical spinal cord injury. Jpn J Compr Rehabil Sci. 2019; 10: 88-95.
37) ISO 11228-2 Ergonomics - manual handling - part 2: Pushing and pulling. 2006; ISO.
8) Federici S, Meloni F, Bracalenti M, De Filippis ML. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation. 2015; 37(3): 321-340.
23) Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016; 30(1): 73-84.
31) U.S National Library of Medicine. ClinicalTrials.gov. Identifier: NCT01454570; NCT02118194; NCT02322125; NCT02314221; NCT02658656; NCT04047992; NCT01701388. https://clinicaltrials.gov/. Accessed July 14, 2020.
14) Wu CH, Mao HF, Hu JS, Wang TY, Tsai YJ, Hsu WL. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. J Neuroeng Rehabil. 2018; 15(14): 1-10.
5) Kozlowski AJ, Bryce TN, Dijkers MP. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top Spinal Cord Inj Rehabil. 2015; 21: 110-121.
40) ISO/TR 12296 Ergonomics - Manual handling of people in the healthcare sector. 2012; ISO.
3) Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen AM. Assessment of in-hospital walking velocity and level of assistance in a powered exoskeleton in persons with spinal cord injury. Top Spinal Cord Inj Rehabil. 2015; 21: 100-109.
9) FDA, Evaluation of automatic class III designation (De Novo) for Argo Rewalk™. 2014. Available from: https:// www.accessdata.fda.gov/cdrh_docs/pdf13/DEN130034.pdf. Accessed April 28, 2020.
11) FDA, Indego 510(k) summary. 2016. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf15/K152416.pdf. Accessed April 28, 2020.
33) JIS B 9700, 機械類の安全性-設計のための一般原則-リスクアセスメント及びリスク低減.2013; 日本規格協会
12) FDA, Ekso 510(k). 2016. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf14/K143690.pdf. Accessed April 28, 2020.
22) He Y, Eguren D, Luu TP, Contreras-Vidal JL. Risk management and regulations for lower limb medical exoskeletons: a review. Med Devices (Auckl). 2017; 10: 89-107.
6) Hirano S, Saitoh E, Tanabe S, Katoh M, Shimizu Y, Yatsuya K, et al. Comparison between gait-assisting robot (WPAL) and bilateral knee-ankle-foot orthoses with a medial single hip joint in gait reconstruction for patients with paraplegia. Jpn J Compr Rehabil Sci. 2015; 6: 21-26.
20) U.S National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/. Accessed July 14, 2020.
10) Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J. Spinal Cord Med. 2012; 35: 96-101.
35) 池田博康,他.ロボット介護機器開発のための安全ハンドブック・リスクアセスメントひな形シート.2018; AMEDロボット介護機器開発・導入促進事業基準策定評価コンソーシアム
27) 和田太,緒方友登,吉川真理.外骨格型ロボット装具による対麻痺の歩行再建.義肢装具学.2015; 31(2): 86-90.
15) Shimizu Y, Kadone H, Kubota S, Suzuki K, Abe T, Ueno T, et al. Voluntary ambulation by upper limb-triggered HAL® in patients with complete quadri/paraplegia due to chronic spinal cord injury. Front Neurosci. 2017; 11, 649: 1-12.
24) Kolakowsky-Hayner SA, Crew J, Moran S, Shah A. Safety and feasibility of using the EksoTM Bionic exoskeleton to aid ambulation after spinal cord injury. J Spine. 2013; S4: 1-8.
39) ISO 11226 Ergonomics - Evaluation of static working postures. 2000; ISO.
13) Goffer A. Enhanced safety of gait in powered exoskeletons. Dynamic Walking conference 2014: 2 pages. Available from: http://dynamicwalking.ethz.ch/paper/viewFile/17/17-67-1-PB.pdf. Accessed April 30, 2020.
References_xml
SSID ssib002605052
ssib031740848
ssj0066732
Score 1.8678154
Snippet The usage of powered exoskeletons has been reported to benefit gait reconstruction in patients with spinal cord injury (SCI). However, few studies have...
SourceID proquest
jstage
SourceType Aggregation Database
Publisher
StartPage 15
SubjectTerms Adverse events
Exoskeleton
Exoskeletons
falls
Gait
Hazard assessment
Malfunctions
Paralysis
Paraplegics
Physical therapists
powered exoskeleton
Rehabilitation
Risk analysis
Risk assessment
Risk management
Risk reduction
Safety
Safety management
Spinal cord injuries
spinal cord injury
Walking
Title Safety and risk management of powered exoskeleton for spinal cord injury
URI https://www.jstage.jst.go.jp/article/josh/14/1/14_JOSH-2020-0010-GE/_article/-char/en
https://www.proquest.com/docview/2495022460
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Occupational Safety and Health, 2021/02/28, Vol.14(1), pp.15-28
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKeOEFgQAxGMgP5KlKSWInTR67kq4qYxWslcpTFMf2aCuaaWkltk_Cx-XO-dOMTQiQKtdNLSu5-8V357vzEfIOJBJaHZmtXRHYPBLSjvpM2lmQMqFT5jvGo_vpLBjP-WThLzqdn62opd1W9LKbe_NK_oercA34ilmy_8DZZlK4AH3gL7TAYWj_isfnqcaIyyZE_HsTy2ICmbEAGuiT6kderEG6bKugwuLSVMJCs7O73Kx2t5Oiv-TWcGiFXFbfMPsNVgJYFmrZXavN-nrXbMx-xf15lF1LqdbLBiHTybTM2VfrvIHex_hDNfYqv06LZhIr7luDPgZcQOeYYwdGWbFvHTtWODIdFz7t7QnPbaV7G9EBIn-_TiE99i6D7sCkl7ZWX1T3g7BMVO6p-hqzQaIubi3Z_A40y_W3TA39XSx43HipVnnxrTeZno8BRB7m04MIOon3grB2_p9Nk9H89DSZxYvZA_LQwyME0d3_uWWYBaYCYP0blDCOhQlqHQBrqRo_e_1AZW463sf7--8CFKAVmAMXd3UCo-jMnpDHlYVCByXcnpLOKn1GxiXUKJCWItToHmo017SCGm1BjQLUaAk1ilCjJdSek_kong3HdlWEw1653Fd2FCovU5mb-anoC3h0FWrejwRjUvPI0yzUoYqYIyLXc4RUAsiQOkzrMExF4DD2ghxs8o16SaifSi6lFlJ4GQ8zmcrAZ9wHC1czDZbDIYlLGiSX5UkrSfVmJUgzMFITFxukXYK0w3hMJzmJm2GYqAjrwiE5qkmYVG9rkWCNdXN6ovPqz3-_Jo_2OD4iB9urnXoDiudWvDUY-AUgAnzN
link.rule.ids 315,783,787,27937,27938
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+and+risk+management+of+powered+exoskeleton+for+spinal+cord+injury&rft.jtitle=Ro%CC%84do%CC%84+anzen+eisei+kenkyu&rft.au=OYAMA%2C+Hideki&rft.au=HOJO%2C+Rieko&rft.au=IKEDA%2C+Hiroyasu&rft.au=%E7%A7%80%E7%B4%80%2C+%E5%B0%8F%E5%B1%B1&rft.date=2021-02-28&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1882-6822&rft.eissn=1883-678X&rft.volume=14&rft.issue=1&rft.spage=15&rft_id=info:doi/10.2486%2Fjosh.JOSH-2020-0010-GE&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-6822&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-6822&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-6822&client=summon