Safety and risk management of powered exoskeleton for spinal cord injury
The usage of powered exoskeletons has been reported to benefit gait reconstruction in patients with spinal cord injury (SCI). However, few studies have reported on the aspects of safety. We investigated and observed rehabilitation using exoskeleton, and performed a risk analysis for safer exoskeleto...
Saved in:
Published in | Journal of Occupational Safety and Health Vol. 14; no. 1; pp. 15 - 28 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
Tokyo
National Institute of Occupational Safety and Health
28.02.2021
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The usage of powered exoskeletons has been reported to benefit gait reconstruction in patients with spinal cord injury (SCI). However, few studies have reported on the aspects of safety. We investigated and observed rehabilitation using exoskeleton, and performed a risk analysis for safer exoskeletons. First, we reviewed reports on adverse events and found a high incidence of skin troubles and device malfunctions but a low incidence of falls. It suggests the usefulness of support from human helpers. Second, gait training using two types of exoskeletons was performed at a rehabilitation center. The falling of a paraplegic patient with an exoskeleton was prevented by the contact assistance and supervision of two physical therapists, thus confirming that safety was dependent on human support. On the other hand, the specific themes of rehabilitation using exoskeletons were also found, such as unstable walking, behaviors suggesting psychological and physical fatigue in physical therapists, and problems of fitting and usability. Finally, the risk assessment results indicated the engineering protective measures to multiple hazards reduced the risk score, but some unavoidable risks, such as falls, remained without the human supports. The development of safer exoskeletons requires comprehensive risk reduction measures through engineering protection and human support which assumed the usage of patients with SCI and their helpers. |
---|---|
AbstractList | The usage of powered exoskeletons has been reported to benefit gait reconstruction in patients with spinal cord injury (SCI). However, few studies have reported on the aspects of safety. We investigated and observed rehabilitation using exoskeleton, and performed a risk analysis for safer exoskeletons. First, we reviewed reports on adverse events and found a high incidence of skin troubles and device malfunctions but a low incidence of falls. It suggests the usefulness of support from human helpers. Second, gait training using two types of exoskeletons was performed at a rehabilitation center. The falling of a paraplegic patient with an exoskeleton was prevented by the contact assistance and supervision of two physical therapists, thus confirming that safety was dependent on human support. On the other hand, the specific themes of rehabilitation using exoskeletons were also found, such as unstable walking, behaviors suggesting psychological and physical fatigue in physical therapists, and problems of fitting and usability. Finally, the risk assessment results indicated the engineering protective measures to multiple hazards reduced the risk score, but some unavoidable risks, such as falls, remained without the human supports. The development of safer exoskeletons requires comprehensive risk reduction measures through engineering protection and human support which assumed the usage of patients with SCI and their helpers. |
Author | HOJO, Rieko IKEDA, Hiroyasu OYAMA, Hideki |
Author_xml | – sequence: 1 fullname: OYAMA, Hideki organization: National Institute of Occupational Safety and Health, Japan – sequence: 2 fullname: HOJO, Rieko organization: National Institute of Occupational Safety and Health, Japan – sequence: 3 fullname: IKEDA, Hiroyasu organization: National Institute of Occupational Safety and Health, Japan |
BookMark | eNo9kNFKwzAUhoNMcM69ggS8jqZJ2qWXMuamDHYxBe9C0p64dl1Skw7d29s68eacc_Hx85_vGo2cd4DQbULvmZDZQ-3j7v5ls10RRhkllCaULBcXaJxIyUk2k--j35uRTDJ2haYxVoZSltGUpmyMVlttoTth7UocqrjHB-30BxzAddhb3PovCFBi-PZxDw103mHrA45t5XSDCx9KXLn6GE436NLqJsL0b0_Q29Pidb4i683yef64JnUiUiC5BFZAkRSpNjPTNwFpxSw3nJdW5MxyaSXknJo8YdSUYKSQmnJrpdQmo5xP0N05tw3-8wixU7U_hr5MVEzkKWVM9NgErc9UHbv-HdWG6qDDSenQVUUDatCmEqGSYQz61KBPDfrUcvGPFTsdFDj-A81WbrI |
ContentType | Journal Article |
Copyright | 2020 National Institute of Occupational Safety and Health Copyright Japan Science and Technology Agency 2021 |
Copyright_xml | – notice: 2020 National Institute of Occupational Safety and Health – notice: Copyright Japan Science and Technology Agency 2021 |
DBID | 7T2 C1K |
DOI | 10.2486/josh.JOSH-2020-0010-GE |
DatabaseName | Health and Safety Science Abstracts (Full archive) Environmental Sciences and Pollution Management |
DatabaseTitle | Health & Safety Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Health & Safety Science Abstracts |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1883-678X |
EndPage | 28 |
ExternalDocumentID | article_josh_14_1_14_JOSH_2020_0010_GE_article_char_en |
GroupedDBID | ACGFS ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT 7T2 C1K |
ID | FETCH-LOGICAL-j145e-98e2cec1c5ab7bb00e8f479b33df492f38f8e930b9120bdeb848a03ff88ab6033 |
ISSN | 1882-6822 |
IngestDate | Thu Oct 10 18:59:01 EDT 2024 Wed Apr 05 07:42:58 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 1 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j145e-98e2cec1c5ab7bb00e8f479b33df492f38f8e930b9120bdeb848a03ff88ab6033 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/josh/14/1/14_JOSH-2020-0010-GE/_article/-char/en |
PQID | 2495022460 |
PQPubID | 2048382 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2495022460 jstage_primary_article_josh_14_1_14_JOSH_2020_0010_GE_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2021/02/28 |
PublicationDateYYYYMMDD | 2021-02-28 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021/02/28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Occupational Safety and Health |
PublicationTitleAlternate | Journal of Occupational Safety and Health |
PublicationYear | 2021 |
Publisher | National Institute of Occupational Safety and Health Japan Science and Technology Agency |
Publisher_xml | – name: National Institute of Occupational Safety and Health – name: Japan Science and Technology Agency |
References | 18) Kardofaki M. Mechatronics development of a scalable exoskeleton for the lower part of a handicapped person. Thèse de doctorat de l’Université Paris-Saclay préparée à l’Université de Versailles Saint-Quentin-en-Yvelines. 2019. 34) JIS B 8455, ロボット及びロボティックデバイス-生活支援ロボットの安全要求事項.2016; 日本規格協会 2) 高橋明子,梅崎重夫.労働災害による脊髄損傷の発生傾向の分析-労働災害データを対象として-.労働安全衛生研究. 2019; 12(1): 41-50. 21) FDA MAUDE - Manufacturer and User Facility Device Experience. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/search.cfm. Accessed July 14, 2020. 36) ISO 11228-1Ergonomics - manual handling - part 1: Lifting and carrying. 2003; ISO. 38) ISO 11228-3 Ergonomics - manual handling - part 3: Handling of low loads at high frequency. 2007; ISO. 28) 緒方友登,久原聡志,明日徹,舌間秀雄,和田太.外骨格系歩行アシスト装置(ReWalkTM)の使用にて歩行が可能となった第7胸髄完全損傷症例.理学療法学. 2015; Suppl: O-0757 19) Contreras-Vidal JL, A Bhagat N, Brantley J, Cruz-Garza JG, He Y, Manley Q, et al. Powered exoskeletons for bipedal locomotion after spinal cord injury. J Neural Eng. 2016; 13(3): 1-16. 26) Dolbow DR, Gorgey AS, Daniels JA, Adler RA, Moore JR, Gater DR Jr. The effects of spinal cord injury and exercise on bone mass: a literature review. NeuroRehabilitation. 2011; 29(3): 261-269. 29) 山田義範, 高橋雄平, 駒形忠臣, 古澤一成.脊髄損傷者における外骨格型ロボット装具を用いた歩行について.理学療法学. 2016; Suppl 2: O-NV-07-6. 4) Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, et al. Mobility outcomes following five training sessions with a powered exoskeleton. Top Spinal Cord Inj Rehabil. 2015; 21: 93-99. 30) 横山修,丸谷守保,鳥山貴大,浅井直樹,村田知之,山上大亮.外骨格型ロボット装具ReWalkの効果と安全性について.脊髄障害医学. 2016; Suppl: O1-2-13. 32) G. Chen, C. K. Chan, Z. Guo, H. Yu. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Critical Reviews in Biomedical Engineering. 2013; 41(4-5): 343-363. 1) Shingu H, Ohama M, Ikata T, Katoh S, Akatsu T. A nationwide epidemiological survey of spinal cord injuries in Japan from January 1990 to December 1992. Paraplegia. 1995; 33: 183-188. 17) Tanabe S, Hirano S, Saitoh E. Wearable power-assist locomotor (WPAL) for supporting upright walking in persons with paraplegia. NeuroRehabilitation. 2013; 33(1): 99-106. 25) Read E, Woolsey C, McGibbon CA, O’Connell C. Physiotherapists’ experiences using the Ekso Bionic Exoskeleton with patients in a neurological rehabilitation hospital: A qualitative study. Rehabilitation Research and Practice. 2020; Volume 2020, Article ID 2939573, 8 pages. 16) Tanabe S, Saitoh E, Hirano S, Katoh M, Takemitsu T, Uno A, et al. Design of the wearable power-assist locomotor (WPAL) for paraplegic gait reconstruction. Disabil Rehabil Assist Technol. 2013; 8(1): 84-91. 7) Fuse I, Hirano S, Saitoh E, Otaka Y, Tanabe S, Katoh M, et al. Gait reconstruction using the gait assist robot WPAL in patients with cervical spinal cord injury. Jpn J Compr Rehabil Sci. 2019; 10: 88-95. 37) ISO 11228-2 Ergonomics - manual handling - part 2: Pushing and pulling. 2006; ISO. 8) Federici S, Meloni F, Bracalenti M, De Filippis ML. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation. 2015; 37(3): 321-340. 23) Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016; 30(1): 73-84. 31) U.S National Library of Medicine. ClinicalTrials.gov. Identifier: NCT01454570; NCT02118194; NCT02322125; NCT02314221; NCT02658656; NCT04047992; NCT01701388. https://clinicaltrials.gov/. Accessed July 14, 2020. 14) Wu CH, Mao HF, Hu JS, Wang TY, Tsai YJ, Hsu WL. The effects of gait training using powered lower limb exoskeleton robot on individuals with complete spinal cord injury. J Neuroeng Rehabil. 2018; 15(14): 1-10. 5) Kozlowski AJ, Bryce TN, Dijkers MP. Time and effort required by persons with spinal cord injury to learn to use a powered exoskeleton for assisted walking. Top Spinal Cord Inj Rehabil. 2015; 21: 110-121. 40) ISO/TR 12296 Ergonomics - Manual handling of people in the healthcare sector. 2012; ISO. 3) Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen AM. Assessment of in-hospital walking velocity and level of assistance in a powered exoskeleton in persons with spinal cord injury. Top Spinal Cord Inj Rehabil. 2015; 21: 100-109. 9) FDA, Evaluation of automatic class III designation (De Novo) for Argo Rewalk™. 2014. Available from: https:// www.accessdata.fda.gov/cdrh_docs/pdf13/DEN130034.pdf. Accessed April 28, 2020. 11) FDA, Indego 510(k) summary. 2016. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf15/K152416.pdf. Accessed April 28, 2020. 33) JIS B 9700, 機械類の安全性-設計のための一般原則-リスクアセスメント及びリスク低減.2013; 日本規格協会 12) FDA, Ekso 510(k). 2016. Available from: http://www.accessdata.fda.gov/cdrh_docs/pdf14/K143690.pdf. Accessed April 28, 2020. 22) He Y, Eguren D, Luu TP, Contreras-Vidal JL. Risk management and regulations for lower limb medical exoskeletons: a review. Med Devices (Auckl). 2017; 10: 89-107. 6) Hirano S, Saitoh E, Tanabe S, Katoh M, Shimizu Y, Yatsuya K, et al. Comparison between gait-assisting robot (WPAL) and bilateral knee-ankle-foot orthoses with a medial single hip joint in gait reconstruction for patients with paraplegia. Jpn J Compr Rehabil Sci. 2015; 6: 21-26. 20) U.S National Library of Medicine. ClinicalTrials.gov. https://clinicaltrials.gov/. Accessed July 14, 2020. 10) Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. J. Spinal Cord Med. 2012; 35: 96-101. 35) 池田博康,他.ロボット介護機器開発のための安全ハンドブック・リスクアセスメントひな形シート.2018; AMEDロボット介護機器開発・導入促進事業基準策定評価コンソーシアム 27) 和田太,緒方友登,吉川真理.外骨格型ロボット装具による対麻痺の歩行再建.義肢装具学.2015; 31(2): 86-90. 15) Shimizu Y, Kadone H, Kubota S, Suzuki K, Abe T, Ueno T, et al. Voluntary ambulation by upper limb-triggered HAL® in patients with complete quadri/paraplegia due to chronic spinal cord injury. Front Neurosci. 2017; 11, 649: 1-12. 24) Kolakowsky-Hayner SA, Crew J, Moran S, Shah A. Safety and feasibility of using the EksoTM Bionic exoskeleton to aid ambulation after spinal cord injury. J Spine. 2013; S4: 1-8. 39) ISO 11226 Ergonomics - Evaluation of static working postures. 2000; ISO. 13) Goffer A. Enhanced safety of gait in powered exoskeletons. Dynamic Walking conference 2014: 2 pages. Available from: http://dynamicwalking.ethz.ch/paper/viewFile/17/17-67-1-PB.pdf. Accessed April 30, 2020. |
References_xml | |
SSID | ssib002605052 ssib031740848 ssj0066732 |
Score | 1.8678154 |
Snippet | The usage of powered exoskeletons has been reported to benefit gait reconstruction in patients with spinal cord injury (SCI). However, few studies have... |
SourceID | proquest jstage |
SourceType | Aggregation Database Publisher |
StartPage | 15 |
SubjectTerms | Adverse events Exoskeleton Exoskeletons falls Gait Hazard assessment Malfunctions Paralysis Paraplegics Physical therapists powered exoskeleton Rehabilitation Risk analysis Risk assessment Risk management Risk reduction Safety Safety management Spinal cord injuries spinal cord injury Walking |
Title | Safety and risk management of powered exoskeleton for spinal cord injury |
URI | https://www.jstage.jst.go.jp/article/josh/14/1/14_JOSH-2020-0010-GE/_article/-char/en https://www.proquest.com/docview/2495022460 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Occupational Safety and Health, 2021/02/28, Vol.14(1), pp.15-28 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKeOEFgQAxGMgP5KlKSWInTR67kq4qYxWslcpTFMf2aCuaaWkltk_Cx-XO-dOMTQiQKtdNLSu5-8V357vzEfIOJBJaHZmtXRHYPBLSjvpM2lmQMqFT5jvGo_vpLBjP-WThLzqdn62opd1W9LKbe_NK_oercA34ilmy_8DZZlK4AH3gL7TAYWj_isfnqcaIyyZE_HsTy2ICmbEAGuiT6kderEG6bKugwuLSVMJCs7O73Kx2t5Oiv-TWcGiFXFbfMPsNVgJYFmrZXavN-nrXbMx-xf15lF1LqdbLBiHTybTM2VfrvIHex_hDNfYqv06LZhIr7luDPgZcQOeYYwdGWbFvHTtWODIdFz7t7QnPbaV7G9EBIn-_TiE99i6D7sCkl7ZWX1T3g7BMVO6p-hqzQaIubi3Z_A40y_W3TA39XSx43HipVnnxrTeZno8BRB7m04MIOon3grB2_p9Nk9H89DSZxYvZA_LQwyME0d3_uWWYBaYCYP0blDCOhQlqHQBrqRo_e_1AZW463sf7--8CFKAVmAMXd3UCo-jMnpDHlYVCByXcnpLOKn1GxiXUKJCWItToHmo017SCGm1BjQLUaAk1ilCjJdSek_kong3HdlWEw1653Fd2FCovU5mb-anoC3h0FWrejwRjUvPI0yzUoYqYIyLXc4RUAsiQOkzrMExF4DD2ghxs8o16SaifSi6lFlJ4GQ8zmcrAZ9wHC1czDZbDIYlLGiSX5UkrSfVmJUgzMFITFxukXYK0w3hMJzmJm2GYqAjrwiE5qkmYVG9rkWCNdXN6ovPqz3-_Jo_2OD4iB9urnXoDiudWvDUY-AUgAnzN |
link.rule.ids | 315,783,787,27937,27938 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety+and+risk+management+of+powered+exoskeleton+for+spinal+cord+injury&rft.jtitle=Ro%CC%84do%CC%84+anzen+eisei+kenkyu&rft.au=OYAMA%2C+Hideki&rft.au=HOJO%2C+Rieko&rft.au=IKEDA%2C+Hiroyasu&rft.au=%E7%A7%80%E7%B4%80%2C+%E5%B0%8F%E5%B1%B1&rft.date=2021-02-28&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=1882-6822&rft.eissn=1883-678X&rft.volume=14&rft.issue=1&rft.spage=15&rft_id=info:doi/10.2486%2Fjosh.JOSH-2020-0010-GE&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-6822&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-6822&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-6822&client=summon |