Structure, activity and inhibition of human TMPRSS2, a protease implicated in SARS-CoV-2 activation
Transmembrane protease, serine 2 (TMPRSS2) has been identified as key host cell factor for viral entry and pathogenesis of SARS-coronavirus-2 (SARS-CoV-2). Specifically, TMPRSS2 proteolytically processes the SARS-CoV-2 Spike (S) Protein, enabling virus-host membrane fusion and infection of the lungs...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Paper |
Language | English Japanese |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
24.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Transmembrane protease, serine 2 (TMPRSS2) has been identified as key host cell factor for viral entry and pathogenesis of SARS-coronavirus-2 (SARS-CoV-2). Specifically, TMPRSS2 proteolytically processes the SARS-CoV-2 Spike (S) Protein, enabling virus-host membrane fusion and infection of the lungs. We present here an efficient recombinant production strategy for enzymatically active TMPRSS2 ectodomain enabling enzymatic characterization, and the 1.95 A X-ray crystal structure. To stabilize the enzyme for co-crystallization, we pre-treated TMPRSS2 with the synthetic protease inhibitor nafamosat to form a stable but slowly reversible (15 hour half-life) phenylguanidino acyl-enzyme complex. Our study provides a structural basis for the potent but non-specific inhibition by nafamostat and identifies distinguishing features of the TMPRSS2 substrate binding pocket that will guide future generations of inhibitors to improve selectivity. TMPRSS2 cleaved recombinant SARS-CoV-2 S protein ectodomain at the canonical S1/S2 cleavage site and at least two additional minor sites previously uncharacterized. We established enzymatic activity and inhibition assays that enabled ranking of clinical protease inhibitors with half-maximal inhibitory concentrations ranging from 1.7 nM to 120 uM and determination of inhibitor mechanisms of action. These results provide a body of data and reagents to support future drug development efforts to selectively inhibit TMPRSS2 and other type 2 transmembrane serine proteases involved in viral glycoprotein processing, in order to combat current and future viral threats. Competing Interest Statement The authors have declared no competing interest. |
---|---|
DOI: | 10.1101/2021.06.23.449282 |