User Information Extraction for Personalized Dialogue Systems

We propose a method to extract user information in a structured form for personalized dialogue systems. Assuming that user information can be represented as a quadruple <predicate-argument structure, entity, attribute category, topic>, we focus on solving problems in extracting predicate argum...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Japanese Society for Artificial Intelligence Vol. 31; no. 1; pp. DSF-B_1 - 10
Main Authors Hirano, Toru, Kobayashi, Nozomi, Higashinaka, Ryuichiro, Makino, Toshiro, Matsuo, Yoshihiro
Format Journal Article
LanguageJapanese
Published The Japanese Society for Artificial Intelligence 08.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a method to extract user information in a structured form for personalized dialogue systems. Assuming that user information can be represented as a quadruple <predicate-argument structure, entity, attribute category, topic>, we focus on solving problems in extracting predicate argument structures from question-answer pairs in which arguments and predicates are frequently omitted, and in estimating attribute categories related to user behavior which a method using only content words cannot distinguish. Experimental results show that the proposed method significantly outperformed baseline methods and was able to extract user information with 81.2% precision and 58.1% recall.
AbstractList We propose a method to extract user information in a structured form for personalized dialogue systems. Assuming that user information can be represented as a quadruple <predicate-argument structure, entity, attribute category, topic>, we focus on solving problems in extracting predicate argument structures from question-answer pairs in which arguments and predicates are frequently omitted, and in estimating attribute categories related to user behavior which a method using only content words cannot distinguish. Experimental results show that the proposed method significantly outperformed baseline methods and was able to extract user information with 81.2% precision and 58.1% recall.
Author Hirano, Toru
Kobayashi, Nozomi
Matsuo, Yoshihiro
Higashinaka, Ryuichiro
Makino, Toshiro
Author_xml – sequence: 1
  fullname: Hirano, Toru
  organization: NTT Media Intelligence Laboratories, Nippon Telegraph and Telephone Corporation
– sequence: 2
  fullname: Kobayashi, Nozomi
  organization: NTT Media Intelligence Laboratories, Nippon Telegraph and Telephone Corporation
– sequence: 3
  fullname: Higashinaka, Ryuichiro
  organization: NTT Media Intelligence Laboratories, Nippon Telegraph and Telephone Corporation
– sequence: 4
  fullname: Makino, Toshiro
  organization: NTT Media Intelligence Laboratories, Nippon Telegraph and Telephone Corporation
– sequence: 5
  fullname: Matsuo, Yoshihiro
  organization: NTT Media Intelligence Laboratories, Nippon Telegraph and Telephone Corporation
BookMark eNo9UEtLAzEYDFLBWnv0vn9ga77N5rEHD9KXhYJC7Tl8zWZrln1IEsH6611r8TIzzMDAzC0ZdX1nCbkHOgOeyYdYB3SzxW6VcsiuyBhYLlJFGR1dNJWQ35BpCO5AKWQsB8rH5HEfrE82XdX7FqPru2T5FT2asxzM5NX60HfYuG9bJguHTX_8tMnuFKJtwx25rrAJdnrhCdmvlm_z53T7st7Mn7ZpDYzGFHgFnFelNIUVgisuDBa5kBIMzZVCg4YxKzkyropcHcoMJKLMaCEK4IVgEzL_661DxKPVH9616E8afXSmsfo8XjPQ8AvDCXo44T817-i17dgPkYpZPg
ContentType Journal Article
Copyright The Japanese Society for Artificial Intelligence 2016
Copyright_xml – notice: The Japanese Society for Artificial Intelligence 2016
DOI 10.1527/tjsai.DSF-512
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1346-8030
EndPage 10
ExternalDocumentID article_tjsai_31_1_31_DSF_512_article_char_en
GroupedDBID 123
2WC
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
EBS
EJD
JSF
KQ8
OK1
PQEST
PQQKQ
RJT
XSB
ID FETCH-LOGICAL-j130t-15f155fd7c9e665856ca946771c0488acac33e75a358948bd217aa72096915963
ISSN 1346-0714
IngestDate Wed Apr 05 12:55:26 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j130t-15f155fd7c9e665856ca946771c0488acac33e75a358948bd217aa72096915963
OpenAccessLink https://www.jstage.jst.go.jp/article/tjsai/31/1/31_DSF-512/_article/-char/en
ParticipantIDs jstage_primary_article_tjsai_31_1_31_DSF_512_article_char_en
PublicationCentury 2000
PublicationDate 2016-01-08
PublicationDateYYYYMMDD 2016-01-08
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-08
  day: 08
PublicationDecade 2010
PublicationTitle Transactions of the Japanese Society for Artificial Intelligence
PublicationYear 2016
Publisher The Japanese Society for Artificial Intelligence
Publisher_xml – name: The Japanese Society for Artificial Intelligence
References [Meguro 14] Meguro, T., Minami, Y., Higashinaka, R., and Dohsaka, K.: Learning to Control Listening-oriented Dialogue Using Partially Observable Markov Decision Processes, ACM Transactions on Speech and Language Processing, Vol. 10, No. 4, pp. 15:1-15:20 (2014)
[Pei 01] Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., and Hsu, M.: PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-projected Pattern Growth, in Proceedings of the 17th International Conference on Data Engineering, pp. 215-224 (2001)
[Kim 14] Kim, Y., Bang, J., Choi, J., Ryu, S., Koo, S., and Lee, G. G.: Acquisition and Use of Long-term Memory for Personalized Dialog Systems, in Proceedings of the 2014 Workshop on Multimodal Analyses enabling Artificial Agents in Human-Machine Interaction (2014)
[今村 11] 今村 賢治, 泉 朋子, 菊井 玄一郎, 佐藤 理史:述部機能表現の意味ラベルタガー, 言語処理学会第17回年次大会論文集, pp. 308-311 (2011)
[Ardissono 04] Ardissono, L., Gena, C., Torasso, P., Bellifemine, F., Difino, A., and Negro, B.: User Modeling and Recommendation Techniques for Personalized Electronic Program Guides, in Personalized Digital Television - Targeting Programs to Individual Viewers, Vol. 6 of Human - Computer Interaction Series, pp. 3-26 (2004)
[Banko 08] Banko, M. and Etzioni, O.: The Tradeoffs Between Open and Traditional Relation Extraction, in Proceedings of the 46th Annual Meeting on Association for Computational Linguistics: Human Language Technologies, pp. 28-36 (2008)
[Weizenbaum 66] Weizenbaum, J.: ELIZA - A Computer Program for the Study of Natural Language Communication Between Man and Machine, Communications of the Association for Computing Machinery, Vol. 9, pp. 36-45 (1966)
[Palmer 10] Palmer, M., Gildea, D., and Xue, N.: Semantic Role Labeling, Synthesis Lectures on Human Language Technologies, Vol. 3, No. 1, pp. 1-103 (2010)
[Corbin 15] Corbin, C., Morbini, F., and Traum, D.: Creating a Virtual Neighbor, in Proceedings of the 2015 International Workshop Series on Spoken Dialogue Systems Technology (2015)
[Higashinaka 14] Higashinaka, R., Imamura, K., Meguro, T., Miyazaki, C., Kobayashi, N., Sugiyama, H., Hirano, T., Makino, T., and Matsuo, Y.: Towards an Open Domain Conversational System Fully Based on Natural Language Processing, in Proceedings of the 25th International Conference on Computational Linguistics, pp. 928-939 (2014)
[池原 99] 池原 悟, 宮崎 正弘, 白井 諭, 横尾 昭男, 中岩 浩巳, 小倉 健太郎, 大山 芳史, 林 良彦:日本語語彙大系 CD-ROM版, 岩波書店 (1999)
[Jiang 11] Jiang, Y., Liu, J., Tang, M., and Liu, X.: An Effective Web Service Recommendation Method Based on Personalized Collaborative Filtering, in Proceedings of the 2011 IEEE International Conference on Web Services, pp. 211-218 (2011)
[Wallace 04] Wallace, R. S.: The Anatomy of A.L.I.C.E., ALICE Artificial Intelligence Foundation, Inc. (2004)
[Lafferty 01] Lafferty, J., McCallum, A., and Pereira, F. C.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data, in Proceedings of the 18th International Conference on Machine Learning, pp. 282-289 (2001)
[Sugiyama 14] Sugiyama, H., Meguro, T., Higashinaka, R., and Minami, Y.: Large-scale Collection and Analysis of Personal Question-Answer Pairs for Conversational Agents, in Proceedings of the 14th International Conference on Intelligent Virtual Agents, pp. 420-433 (2014)
[Sadamitsu 13] Sadamitsu, K., Higashinaka, R., Hirano, T., and Izumi, T.: Knowledge Extraction from Text for Intelligent Responses, NTT Technical Review, Vol. 11, No. 7, pp. 1-5 (2013)
[Wong 12] Wong, W., Cavedon, L., Thangarajah, J., and Padgham, L.: Strategies for Mixed-initiative Conversation Management using Question-answer Pairs, in Proceedings of the 24th International Conference on Computational Linguistics, pp. 2821-2834 (2012)
[Bickmore 05] Bickmore, T. W. and Picard, R. W.: Establishing and Maintaining Long-term Human-computer Relationships, ACM Transactions on Computer-Human Interaction, Vol. 12, No. 2, pp. 293-327 (2005)
[Ritter 11] Ritter, A., Cherry, C., and Dolan, W. B.: Data-Driven Response Generation in Social Media, in Proceedings of the Conference on Empirical Methods in Natural Language, pp. 583-593 (2011)
[Shen 05] Shen, X., Tan, B., and Zhai, C.: Implicit User Modeling for Personalized Search, in Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 824-831 (2005)
[Imamura 14] Imamura, K., Higashinaka, R., and Izumi, T.: Predicate-Argument Structure Analysis with Zero-Anaphora Resolution for Dialogue Systems, in Proceedings of the 25th International Conference on Computational Linguistics, pp. 806-815 (2014)
[Qiu 06] Qiu, F. and Cho, J.: Automatic Identification of User Interest for Personalized Search, in Proceedings of the 15th International Conference on World Wide Web, pp. 727-736 (2006)
References_xml
SSID ssib001234105
ssib008501343
ssib047348305
ssib000961560
ssib026596680
ssj0057238
ssib006575950
Score 2.1087549
Snippet We propose a method to extract user information in a structured form for personalized dialogue systems. Assuming that user information can be represented as a...
SourceID jstage
SourceType Publisher
StartPage DSF-B_1
SubjectTerms personalized dialogue systems
predicate-argument structure analysis
user information extraction
Title User Information Extraction for Personalized Dialogue Systems
URI https://www.jstage.jst.go.jp/article/tjsai/31/1/31_DSF-512/_article/-char/en
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Japanese Society for Artificial Intelligence, 2016/01/06, Vol.31(1), pp.DSF-B_1-10
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDBay7rLL3sPe0GG3wV1sWY4F7NKtLYoOGzYsAXozZMXG7GLN4DjAmj_av9NPD0cK1kPbXYxAlpRIZMiPFEUS8m6e1iob12UkqhwGioQcLFVaQRhWMh2XTAmlXQNfv2VHs_T4hJ-MRhdB1NKqL3fV-sp7JbehKtpAV31L9gaU3UyKBnwGffEEhfG8Fo1n-Jb37kKRoePB375zxb91-OD3AWmvASv3G-un2UpS3gYayw5cDlEDx1CjujzlVmDnXmdii2yGDp_M0zuwMZFxvk4X3WojzCEzznXRJntQtF78bgKPt6nmJE8tiD1fNepX0y28o_y0GSZcbl44L0VsvRT5hq-mt_nZViKzNDO3rKzC8m352B3oODHulEnIrlYm7_88jD4VcaDibSDtP8qDJ_r4um-XstnVg7gL8N7Ox-2oXZh-BYuLWD_Qv0D_Ynir78yBRe-QuwkkoI41_PIjwL0ii0O7FPBBh9t6QajLpgbHzTkHUvd505KMw0r1gjfVKYqM4LYQhOtKcsbT4PbOJZfFAj9sLQ-wq4URMgQwGkw1fUjuO2OI7tnVPCKjVj4mD4ZCI9TpnSfEMDoNGJ16RqdopCGj04HRqWP0p2R2eDD9fBS5uh9RC0TVRzGvgXLr-USJKgNC5pmSAgp9Eiutb6SSirFqwiXjuUjzcg6zWspJgl0VQOcZe0Z2zhZn1XNCBU_qhHGR1LIEDEtK9NQ56SoxZti3-Qvy0W5A8ccmdyluRN6X_zf8Fbnn_yuvyU7frao3wLh9-dbwyyWvRKoe
link.rule.ids 315,783,787,27938,27939
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=User+Information+Extraction+for+Personalized+Dialogue+Systems&rft.jtitle=Transactions+of+the+Japanese+Society+for+Artificial+Intelligence&rft.au=Hirano%2C+Toru&rft.au=Kobayashi%2C+Nozomi&rft.au=Higashinaka%2C+Ryuichiro&rft.au=Makino%2C+Toshiro&rft.date=2016-01-08&rft.pub=The+Japanese+Society+for+Artificial+Intelligence&rft.issn=1346-0714&rft.eissn=1346-8030&rft.volume=31&rft.issue=1&rft.spage=DSF-B_1&rft.epage=10&rft_id=info:doi/10.1527%2Ftjsai.DSF-512&rft.externalDocID=article_tjsai_31_1_31_DSF_512_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-0714&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-0714&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-0714&client=summon