Experimental Study to Improve Local Trapping Efficiency of Microbubbles by Time-shared Emission of Three-dimensional Acoustic Field

We previously reported our attempts to increase local concentration of microbubbles in water flow by acoustic radiation force, with the aim to apply to ultrasound therapy. Because the actual blood vessels are generally structurally complex and contain multiple bifurcations, trapping microbubbles in...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Japanese Society for Medical and Biological Engineering Vol. 53; no. 3; pp. 179 - 186
Main Authors SAWAGUCHI, Toi, HOSAKA, Naoto, KODA, Ren, ONOGI, Shinya, MOCHIZUKI, Takashi, MASUDA, Kohji
Format Journal Article
LanguageJapanese
Published Japanese Society for Medical and Biological Engineering 29.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We previously reported our attempts to increase local concentration of microbubbles in water flow by acoustic radiation force, with the aim to apply to ultrasound therapy. Because the actual blood vessels are generally structurally complex and contain multiple bifurcations, trapping microbubbles in multiple areas will improve total therapeutic efficiency. However, there is a limitation to the number of ultrasound transducers that can be placed on the body surface, since a single-element transducer produces only one focal point. In this study, we developed a method to trap microbubbles (bubble liposome) that may contain various kinds of drugs in multiple areas by designing a time-shared acoustic field produced by a 2D array transducer at a frequency of 1 MHz. First, we conducted an experiment to trap microbubbles in a straight path of an artificial blood vessel to investigate the relationship between the trapped area and ultrasound parameters. Next, we conducted an experiment to produce a time-shared acoustic field under optimal conditions : maximum sound pressure of 150 kPa-pp and duty ratio of 25% in ultrasound emission. Under these conditions, we succeeded in trapping microbubbles simultaneously in four individual parallel paths with inner diameter of 0.7 mm, in a multi-bifurcated artificial blood vessel model. We also measured the area of trapped microbubbles under a continuous wide acoustic field that covered the area of four paths. Using the same ultrasound power, the time-shared acoustic field had improved trapping efficiency compared to the continuous acoustic field.
AbstractList We previously reported our attempts to increase local concentration of microbubbles in water flow by acoustic radiation force, with the aim to apply to ultrasound therapy. Because the actual blood vessels are generally structurally complex and contain multiple bifurcations, trapping microbubbles in multiple areas will improve total therapeutic efficiency. However, there is a limitation to the number of ultrasound transducers that can be placed on the body surface, since a single-element transducer produces only one focal point. In this study, we developed a method to trap microbubbles (bubble liposome) that may contain various kinds of drugs in multiple areas by designing a time-shared acoustic field produced by a 2D array transducer at a frequency of 1 MHz. First, we conducted an experiment to trap microbubbles in a straight path of an artificial blood vessel to investigate the relationship between the trapped area and ultrasound parameters. Next, we conducted an experiment to produce a time-shared acoustic field under optimal conditions : maximum sound pressure of 150 kPa-pp and duty ratio of 25% in ultrasound emission. Under these conditions, we succeeded in trapping microbubbles simultaneously in four individual parallel paths with inner diameter of 0.7 mm, in a multi-bifurcated artificial blood vessel model. We also measured the area of trapped microbubbles under a continuous wide acoustic field that covered the area of four paths. Using the same ultrasound power, the time-shared acoustic field had improved trapping efficiency compared to the continuous acoustic field.
Author KODA, Ren
ONOGI, Shinya
MASUDA, Kohji
MOCHIZUKI, Takashi
SAWAGUCHI, Toi
HOSAKA, Naoto
Author_xml – sequence: 1
  fullname: SAWAGUCHI, Toi
  organization: Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
– sequence: 2
  fullname: HOSAKA, Naoto
  organization: Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
– sequence: 3
  fullname: KODA, Ren
  organization: Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
– sequence: 4
  fullname: ONOGI, Shinya
  organization: Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
– sequence: 5
  fullname: MOCHIZUKI, Takashi
  organization: Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
– sequence: 6
  fullname: MASUDA, Kohji
  organization: Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology
BookMark eNo9UEFOwzAQtFCRKKVH7v5Aih0ncXJCVZVCpSIOBIlbZDub1lUSR3aKyJmP1wHEZXc1O5rZ2Vs060wHCN1TsqI0ZNnDybUSVjFbUZ5doTlNUxpEjGczP7OIB1HEPm7Q0jktCaGUEBLGc_Sdf_VgdQvdIBr8NpyrEQ8G79remk_Ae6M8XFjR97o74LyutdLQqRGbGr9oZY08S9mAw3LEhZcJ3FFYqHDeau9kuolXHC1AUE0mE-QF18qc3aAV3mpoqjt0XYvGwfKvL9D7Ni82z8H-9Wm3We-DEw2TIRCSS-AUIs6gSlKSRSFRJI15mkHIRB3Fac245JlHVOI5QtUsrDIVc6iAJWyBHn91T24QByh7n1vYsRTWn9JA-fPBMmYlm4p_4_9G-VAldOwCN5Vygg
ContentType Journal Article
Copyright 2015 Japanese Society for Medical and Biological Engineering
Copyright_xml – notice: 2015 Japanese Society for Medical and Biological Engineering
DOI 10.11239/jsmbe.53.179
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1881-4379
EndPage 186
ExternalDocumentID article_jsmbe_53_3_53_179_article_char_en
GroupedDBID 2WC
ALMA_UNASSIGNED_HOLDINGS
JSF
OK1
RJT
ID FETCH-LOGICAL-j126t-ab7be71e473ed6809420c085789e23af458f37b79578c63edacf32d9c57ede363
ISSN 1347-443X
IngestDate Wed Apr 05 04:09:54 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j126t-ab7be71e473ed6809420c085789e23af458f37b79578c63edacf32d9c57ede363
OpenAccessLink https://www.jstage.jst.go.jp/article/jsmbe/53/3/53_179/_article/-char/en
PageCount 8
ParticipantIDs jstage_primary_article_jsmbe_53_3_53_179_article_char_en
PublicationCentury 2000
PublicationDate 2015-10-29
PublicationDateYYYYMMDD 2015-10-29
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-29
  day: 29
PublicationDecade 2010
PublicationTitle Transactions of Japanese Society for Medical and Biological Engineering
PublicationTitleAlternate Transactions of Japanese Society for Medical and Biological Engineering
PublicationYear 2015
Publisher Japanese Society for Medical and Biological Engineering
Publisher_xml – name: Japanese Society for Medical and Biological Engineering
References 4. Sasaki N, Kudo N, Nakamura K, Lim SY, Murakami M, Kumara WR, Tamura Y, Ohta H, Yamasaki M, Takiguchi M: Activation of microbubbles by short-pulsed ultrasound enhances the cytotoxic effect of cis-diamminedichloroplatinum (II)in a canine thyroid adenocarcinoma cell line in vitro. Ultrasound Med Biol. 38( 1 ), pp. 109-118, 2012.
13. Omata D, Negishi Y, Suzuki R, et al, Enhanced gene delivery using Bubble liposomes and ultrasound for folate-PEG liposomes. J Drug Target. 20, pp. 355-363, 2012.
12. Shigehara N, Demachi F, Koda R, Mochizuki T, Masuda K, Ikeda S, Arai F, Miyamoto Y, Chiba T: Experimental Study of Active Path Block in a Multi-Bifurcated Flow by Microbubble Aggregation. Jpn J Appl Phys. 52, 07HF15, 2013.
6. Masuda K, Muramatsu Y, Ueda S, Nakamoto R, Nakayashiki Y, Ishihara K: Active Path Selection of Fluid Microcapsules in Artificial Blood Vessel by Acoustic Radiation Force. Jpn J Appl Phys. 48( 7 ), pp. 07GK03, 2009.
8. 渡會展之, 桝田晃司, 中元隆介, 江田廉:微小気泡の凝集体形成を利用した血管分岐部における能動的流路選択法. 超音波医学. 38( 4 ), pp. 1-14, 2011.
5. Osawa K, Okubo Y, Nakao K, Koyama N, Bessho K: Osteoinduction by microbubble-enhanced transcutaneous sonoporation of human bone morphogenetic protein-2. J Gene Med. 11( 7 ), pp. 633-641, 2009.
17. 保坂直斗, 江田廉, 宮澤慎也, 小野木真哉, 望月剛, 桝田晃司:流路中の微小気泡の制御効率向上のための超音波2次元アレイによる音場設計. 生体医工学. 52( 1 ), pp. 25-32, 2014.
7. Masuda K, Watarai N, Nakamoto R, Muramatsu Y: Production of local acoustic radiation force to constrain direction of microcapsules in flow. Jpn J Appl Phys. 49, 07HF11, 2010.
19. Nakano T, Itoyama T, Yoshida K, Sawada Y, Ikeda S, Fukuda T, Matsuda T, Negoro M, Arai F: Multiscale fabrication of a transparent circulation type blood vessel simulator.Biofludics. 4( 4 ), pp. 1-10, 2010.
10. Masuda K, Nakamoto R, Watarai N, Koda R, Taguchi Y, Kozuka T, Miyamoto Y, Kakimoto T, Enosawa S, Chiba T: Effect of Existence of Red Blood Cells in Trapping Performance of Microbubbles by Acoustic Radiation Force. Jpn J Appl Phys. 50, 07HF11, 2011.
3. Umemura S, Kawabata K, Yoshizawa S: Enhancement of Focal Ultrasonic Treatment by Microbubbles. Proc of Symp on Ultrason Electro, 33, pp. 407-408, 2012.
11. 出町文, 重原伸彦, 江田廉, 澤口冬威, 望月剛, 桝田晃司, 宮本義孝, 千葉敏雄:超音波照射による流体中の微小気泡の凝集体形成法とその計測. 生体医工学. 51( 6 ), pp. 374-383, 2013.
15. 丸山一雄:バブルリポソームによる超音波セラノスティクスの開発, 特集Drug delivery system(DDS)の最新展望. 医薬ジャーナル. 50( 7 ), pp. 1783-1790, 2014.
16. Suzuki R, Takizawa T, Negishi Y, Utoguchi N, Maruyama K: Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology. Int J Pharm. 354, pp. 49-55, 2008.
21. 工藤信樹, 山本克之:超音波の安全性について. 超音波医学.35( 6 ), pp. 623-629, 2008.
9. 江田廉, 渡會展之, 重原伸彦, 伊藤拓未, 南出歩, 桝田晃司, 柿本隆志, 絵野沢伸, 宮本義孝, 千葉敏雄:超音波照射による微小気泡の凝集現象解析と赤血球の影響. 生体医工学. 50( 1 ), pp. 138-148, 2012.
20. Hosaka N, Koda R, Onogi S, Mochizuki T, Masuda K: Production and Validation of Acoustic Field to Enhance Trapping Efficiency of Microbubbles by Using a Matrix Array Transducer. Jpn J Appl Phys. 52, 07HF14, 2013.
2. Hu Y, Wan JMF, Yu ACH: Membrane Perforation and Recovery Dynamics in Microbubble-Mediated Sonoporation. Ultrason Med Biol, 39, pp. 2393-2405, 2013.
1. Elbes D, Denost Q, Laurent C, Trillaud H, Rullier A, Quesson B: Pre-clinical study of in vivo magnetic resonance-guided bubble-enhanced heating in pig liver. Ultrason Med Biol. 39, pp. 1388-1397, 2013.
14. Negishi Y, Oda Y, Suzuki R, et al : AG73-modified Bubble liposomes for targeted ultrasound imaging of tumor neovasculature. Biomaterials. 34, pp. 501-507, 2013.
18. Koda R, Koido J, Hosaka N, Onogi S, Mochizuki T, Masuda K, Suzuki R, Maruyama K: Evaluation of active control of Bubble liposomes in a bifurcated flow under various ultrasound conditions. Adv Biomed Eng. 3, pp. 21-28, 2014.
References_xml
SSID ssib001100025
ssib002484549
ssib023159591
ssj0069534
ssib020474828
ssib000937326
ssib002223871
ssib046007037
ssib007484362
ssib031783949
Score 2.0707889
Snippet We previously reported our attempts to increase local concentration of microbubbles in water flow by acoustic radiation force, with the aim to apply to...
SourceID jstage
SourceType Publisher
StartPage 179
SubjectTerms 2D array transducer
bubble liposome
time-shared emission
trapping efficiency
Title Experimental Study to Improve Local Trapping Efficiency of Microbubbles by Time-shared Emission of Three-dimensional Acoustic Field
URI https://www.jstage.jst.go.jp/article/jsmbe/53/3/53_179/_article/-char/en
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of Japanese Society for Medical and Biological Engineering, 2015/06/10, Vol.53(3), pp.179-186
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECaSdGmHok1bNH2BQzdDriWKEjkKiRM3aWMUttFsgihRSIzWCmp5SNf-8dyRejBIhiRdBJsmZZt3x_tI3X1HyGcVyDAsg9xTgYINSphzT_FSezFg3VGspSwLTE7-fhpNFuHxGT_b2t51opY2tRrmf-_MK3mMVKEN5IpZsg-QbHdTaIDXIF-4goThei8Zj116_pmhhwYoac8J9OAbuilkL780OVFjQxZhMi0x7AUD8dRGqV96jRAUU0G89bkJRx-D7NcNkJyDrLVX4JdY_o5BklemAtjgEIPfXHA772uPmwCRY3DEWODyRmho-2QID-xtIUzz1uFF7A59kp_J0WJ_8tXoVHXRaeB0lpwk1jVUddW5jOlBYhWm0_fp6fTIjJ6dX6yuMveEwzfMqEG_jv7Pj7WLOgtjUENTdxh8nm0TAlST2UI2rSewtMWNxjNnWfebfhYh-Ja8-7bzCRiSty7Xv5UecjbsRt3g8260JTXdUs5Shhfom7afYL4dqPc2eRLEkuOJwskPBzMDoHQxN3L-uY-KEfCJ2E1WFqH7KBfJY1nPERmMQmjp96CA97l0OA0BXwKG7seHWNBg1J9qRJLb0I12klsiW5iML-5UAMRbwoanDZY0-G3-gjxvNl40sf_-JdlaZrvkmSPJV-Sfa0_U2BOtK9rYEzX2RFt7or090aqkrj1RdUUde6KtPWG_W_ZEW3uixp5ek8XheL4_8ZoiJd7SD6Lay1SsdOzrMGa6iMRIwhqXY9kIIXXAsjLkomSxQkGKPII-WV6yoJA5j3WhWcTekJ1VtdJvCZWl4gVjOvIVUjxJJTImC1gxRaG4Lso9IuwMppeWiSa9ty69e_zQ9-Rpb5QfyE79Z6M_AhCv1SejmNdiot10
link.rule.ids 315,786,790,27957,27958
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+Study+to+Improve+Local+Trapping+Efficiency+of+Microbubbles+by+Time-shared+Emission+of+Three-dimensional+Acoustic+Field&rft.jtitle=Transactions+of+Japanese+Society+for+Medical+and+Biological+Engineering&rft.au=SAWAGUCHI%2C+Toi&rft.au=HOSAKA%2C+Naoto&rft.au=KODA%2C+Ren&rft.au=ONOGI%2C+Shinya&rft.date=2015-10-29&rft.pub=Japanese+Society+for+Medical+and+Biological+Engineering&rft.issn=1347-443X&rft.eissn=1881-4379&rft.volume=53&rft.issue=3&rft.spage=179&rft.epage=186&rft_id=info:doi/10.11239%2Fjsmbe.53.179&rft.externalDocID=article_jsmbe_53_3_53_179_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-443X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-443X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-443X&client=summon