A specialized deceptive pollination system based on elaborate mushroom mimicry
Despite its potential effectiveness for outcrossing, few examples of pollination via mushroom mimicry have been reported. This may be because the conditions under which the strategy can evolve are limited and/or because demonstrating it is challenging. Arisaema is a plant genus that has been suggest...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , |
Format | Paper |
Language | English Japanese |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
25.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Despite its potential effectiveness for outcrossing, few examples of pollination via mushroom mimicry have been reported. This may be because the conditions under which the strategy can evolve are limited and/or because demonstrating it is challenging. Arisaema is a plant genus that has been suggested to adopt mushroom mimicry for pollination, although no compelling evidence for this has yet been demonstrated. Here, we report that Arisaema sikokianum utilizes mostly a single genus of obligate mycophagous flies (Mycodrosophila) as pollinators, and that the insect community dominated by Mycodrosophila is strikingly similar to those found on some species of wood-decaying fungi. Comparative chemical analyses of Arisaema spp. and various mushrooms further revealed that only A. sikokianum emits a set of volatile compounds shared with some mushroom species utilized by Mycodrosophila. Meanwhile, other closely related and often sympatric Arisaema species do not possess such typical traits of mushroom mimicry or attract Mycodrosophila, thereby likely achieving substantial reproductive isolation from A. sikokianum. Our finding indicates that mushroom mimicry is an exceptional and derived state in the genus Arisaema, thus providing an unprecedented opportunity to study the mechanisms underlying the coordinated acquisition of mimicry traits that occurred during a recent speciation event. |
---|---|
DOI: | 10.1101/819136 |