Research of Supersonic Free-Vortex Aerodynamic Window : 1st Report, Design Procedure of Free Vortex Nozzle and Operating Condition

In the development of continuous high-power gas laser systems, the supersonic free-vortex aerodynamic window is one of the key technologies for extracting a laser beam from the laser cavity. The present paper describes the design procedure of the two-dimensional supersonic free-vortex nozzle, and de...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Japan Society of Mechanical Engineers Series B Vol. 62; no. 599; pp. 2687 - 2694
Main Authors OHIRA, Katsuhide, WADA, Tomohisa, SONODA, Keisuke, NANBA, Kazumi
Format Journal Article
LanguageJapanese
Published The Japan Society of Mechanical Engineers 25.07.1996
Subjects
Jet
Online AccessGet full text
ISSN0387-5016
1884-8346
DOI10.1299/kikaib.62.2687

Cover

Abstract In the development of continuous high-power gas laser systems, the supersonic free-vortex aerodynamic window is one of the key technologies for extracting a laser beam from the laser cavity. The present paper describes the design procedure of the two-dimensional supersonic free-vortex nozzle, and demonstrates the operating conditions of the window, taking into account the phase transition of the working fluid in the nozzle expansion process and the operating conditions of the supersonic diffuser. Generally, the high-power laser will be operated in the atmospheric environment without auxiliary equipment, i. e., a heater installed in the nozzle supply and/or a vacuum pump connected with the ventage of the supersonic diffuser. Therefore, the temperature of the working fluid at the nozzle supply is nearly 300 K, and the back pressure of the supersonic diffuser is inevitably atmospheric pressure. Hence, when using nitrogen gas as the working fluid in such an environment, the pressure ratio of the laser cavity to the atmosphere, which can be achieved with no phase transition, is about 20. In order to attain the higher pressure ratio of about 50, helium gas is required as the working fluid.
AbstractList In the development of continuous high-power gas laser systems, the supersonic free-vortex aerodynamic window is one of the key technologies for extracting a laser beam from the laser cavity. The present paper describes the design procedure of the two-dimensional supersonic free-vortex nozzle, and demonstrates the operating conditions of the window, taking into account the phase transition of the working fluid in the nozzle expansion process and the operating conditions of the supersonic diffuser. Generally, the high-power laser will be operated in the atmospheric environment without auxiliary equipment, i. e., a heater installed in the nozzle supply and/or a vacuum pump connected with the ventage of the supersonic diffuser. Therefore, the temperature of the working fluid at the nozzle supply is nearly 300 K, and the back pressure of the supersonic diffuser is inevitably atmospheric pressure. Hence, when using nitrogen gas as the working fluid in such an environment, the pressure ratio of the laser cavity to the atmosphere, which can be achieved with no phase transition, is about 20. In order to attain the higher pressure ratio of about 50, helium gas is required as the working fluid.
Author NANBA, Kazumi
WADA, Tomohisa
SONODA, Keisuke
OHIRA, Katsuhide
Author_xml – sequence: 1
  fullname: OHIRA, Katsuhide
– sequence: 1
  fullname: WADA, Tomohisa
– sequence: 1
  fullname: SONODA, Keisuke
– sequence: 1
  fullname: NANBA, Kazumi
BookMark eNo9kMtOAjEUhhuDiYhsXfcBHOxlaKfuCIoaiRi8LSed6QHKpSXtEIWlT-4QCKv_5OTLd3L-S9Rw3gFC15R0KFPqdmEX2hYdwTpMZPIMNWmWpUnGU9FATcIzmXQJFReoHaMtCCGKC8VlE_2NIYIO5Qz7CX7frCFE72yJBwEg-fKhgl_cg-DN1ulVvf-2zvgffIdprPAY1jVxg-8h2qnDb8GXYDYB9q69AB8Fr363WwLWzuBRfUFX1k1x3ztjK-vdFTqf6GWE9jFb6HPw8NF_Soajx-d-b5jMKeu6hElZqIIRqRQAEM1NCRrqP1JjDCcqnUielRMiuRZQMMOgRniWKkhFSuuxhV4O3nms9BTydbArHba5DpUtl5AfKqRKqlywvKtOsW_0RJUzHXJw_B_bLHTZ
ContentType Journal Article
Copyright The Japan Society of Mechanical Engineers
Copyright_xml – notice: The Japan Society of Mechanical Engineers
DOI 10.1299/kikaib.62.2687
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1884-8346
EndPage 2694
ExternalDocumentID article_kikaib1979_62_599_62_599_2687_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j125n-277b9b20799eee0a3dceae9364ddd3094f738cf073a6eb2d2ea3d3849e46413d3
ISSN 0387-5016
IngestDate Wed Sep 03 06:29:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 599
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j125n-277b9b20799eee0a3dceae9364ddd3094f738cf073a6eb2d2ea3d3849e46413d3
OpenAccessLink https://www.jstage.jst.go.jp/article/kikaib1979/62/599/62_599_2687/_article/-char/en
PageCount 8
ParticipantIDs jstage_primary_article_kikaib1979_62_599_62_599_2687_article_char_en
PublicationCentury 1900
PublicationDate 1996/07/25
PublicationDateYYYYMMDD 1996-07-25
PublicationDate_xml – month: 07
  year: 1996
  text: 1996/07/25
  day: 25
PublicationDecade 1990
PublicationTitle Transactions of the Japan Society of Mechanical Engineers Series B
PublicationTitleAlternate JSMET
PublicationYear 1996
Publisher The Japan Society of Mechanical Engineers
Publisher_xml – name: The Japan Society of Mechanical Engineers
References (3) Masuda, W. and Yuasa, M., J. P., Colloque C9, supplement au n_??_ll, Tome 41 (1980), C9-423-429.
(9) 生井武文•松尾一泰,機械工学基礎講座圧縮性流体の力学,(1978), 88-90,理工学社.
(6) 松尾一泰•ほか3名,機論,50-459,B (1983), 2557-2582.
(2) Guile, R. N. and Hilding, W. E., AIAA Paper, 75 122 (1975).
(5) Gilerson, A. A.,ほか4名,Sov. Phys. Tech. Phys., 35-12 (1990), 1379-1382.
(8) ENCYCLOPEDIE DES GAZ, (1976), ELSEVIER/L′AIRLIQUIDE.
(4) Emanuel, G., Gasdynamics: Theory and Applications, AIAA E. S., (1986), 329-345.
(1) Parmentier, E. M. and Greenberg, R. A., AIAA J., 11-7 (1973), 943-949.
(7) Shapiro, A. H., The Dynamics and Thermodynamics of COMPRESSIBLE FLUID FLOW, I (1953), 512-516, THE RONALD PRESS COMPANY.
References_xml – reference: (6) 松尾一泰•ほか3名,機論,50-459,B (1983), 2557-2582.
– reference: (1) Parmentier, E. M. and Greenberg, R. A., AIAA J., 11-7 (1973), 943-949.
– reference: (4) Emanuel, G., Gasdynamics: Theory and Applications, AIAA E. S., (1986), 329-345.
– reference: (7) Shapiro, A. H., The Dynamics and Thermodynamics of COMPRESSIBLE FLUID FLOW, I (1953), 512-516, THE RONALD PRESS COMPANY.
– reference: (5) Gilerson, A. A.,ほか4名,Sov. Phys. Tech. Phys., 35-12 (1990), 1379-1382.
– reference: (9) 生井武文•松尾一泰,機械工学基礎講座圧縮性流体の力学,(1978), 88-90,理工学社.
– reference: (3) Masuda, W. and Yuasa, M., J. P., Colloque C9, supplement au n_??_ll, Tome 41 (1980), C9-423-429.
– reference: (8) ENCYCLOPEDIE DES GAZ, (1976), ELSEVIER/L′AIRLIQUIDE.
– reference: (2) Guile, R. N. and Hilding, W. E., AIAA Paper, 75 122 (1975).
SSID ssib000936937
ssib012348312
ssib002218961
ssib006634345
ssib002223791
ssib003171063
ssib020472910
ssib023160639
ssib002222543
ssj0000608106
Score 1.4538671
Snippet In the development of continuous high-power gas laser systems, the supersonic free-vortex aerodynamic window is one of the key technologies for extracting a...
SourceID jstage
SourceType Publisher
StartPage 2687
SubjectTerms Jet
Title Research of Supersonic Free-Vortex Aerodynamic Window : 1st Report, Design Procedure of Free Vortex Nozzle and Operating Condition
URI https://www.jstage.jst.go.jp/article/kikaib1979/62/599/62_599_2687/_article/-char/en
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Japan Society of Mechanical Engineers Series B, 1996/07/25, Vol.62(599), pp.2687-2694
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELe28QIPiE8xxpAfeBspqe06CW-FgcomtQI6tLcorl0tLWsq0mioj_zl3MVO4gkexsRLP_JxrXz-3f3OuTsT8kpnKhaCi6CvuAyElipQiMdIgLsVuo-cFbMtxnJ0Jk7OB-c7u4de1lK1Ub3Z9q91JbfRKhwDvWKV7D9othUKB-Az6BdeQcPweiMdN2lzdeVJta7Jcz4DMmpM8A2zaH8eDQ1YSLvrPFiAlS6u7CJAuXHc2xodTOOwRQManyiAPBRy5ISMi-32u33OMFljF2abLIBPuxu1LjzXZ2slyib94AT88apND8WUG4PlxvXsaNohlmi0IGjvNoGejD59Gbp8j7K6yHX3EGl4XJ-YFpfFRV62fuXrZDyxZ05NXlbL9obxcPzOidpWl3m30GFzo20PCTc1pzf9w54FxcbBg7Dvem1bCx_HIoi5W_d0LkAyb6oP7I5NjUWXjhAY99XuyfyH5wG3DtNlmS-zXPUk63X3Xevm7eZKai_sJ1GSSpbCTzZveF_aXIWVdzDRd8kdFkV1FsLpZ48942aM3I_G-3HilyljLC98tsZ4lPjmHOil331NckBta96B04iYd-yXYWNRj11CZCCR4LZLmqEEfhna7AA38K5NKgzOm-tDA4RvAeFPkzpZs7npA3LfhWF0aEfgIdlZZI_IPa8552Pyq0EXLea0Qxf10EU9dFGLLvqWAraoxdZrapFFW2ShLBRAnQCLLArIoi2yaIusJ-Ts44fp-1HgdiwJFhAorALQkkoUC6MkMcaEGdczkxlQk9Ba8zAR84jHszm41UwaxTQzcAmPRWKEBDap-VOytypW5hmhc5nFTHOO204LBXE8dg5lIuHaqLmRs31ybAcwXdu2NOmtptbz_yPmgNztIPuC7G1-VOYQ2PpGvazn7G9owuF8
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+of+Supersonic+Free-Vortex+Aerodynamic+Window+%3A+1st+Report%2C+Design+Procedure+of+Free+Vortex+Nozzle+and+Operating+Condition&rft.jtitle=Transactions+of+the+Japan+Society+of+Mechanical+Engineers+Series+B&rft.au=OHIRA%2C+Katsuhide&rft.au=WADA%2C+Tomohisa&rft.au=SONODA%2C+Keisuke&rft.au=NANBA%2C+Kazumi&rft.date=1996-07-25&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.issn=0387-5016&rft.eissn=1884-8346&rft.volume=62&rft.issue=599&rft.spage=2687&rft.epage=2694&rft_id=info:doi/10.1299%2Fkikaib.62.2687&rft.externalDocID=article_kikaib1979_62_599_62_599_2687_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0387-5016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0387-5016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0387-5016&client=summon