A Review of the Split Hopkinson Pressure Bar: Techniques, Advances, and Applications

This review provides a comprehensive overview of experimental studies using the split Hopkinson pressure bar (SHPB) for evaluating the high strain rate properties of materials. It outlines key design guidelines and considerations for SHPB setups and describes data analysis methods across its four lo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Experimental Mechanics p. 25-0008
Main Author Takashi YOKOYAMA
Format Journal Article
LanguageEnglish
Japanese
Published The Japanese Society for Experimental Mechanics 2025
Subjects
Online AccessGet full text
ISSN2189-4752
2424-175X
DOI10.11395/aem.25-0008

Cover

Abstract This review provides a comprehensive overview of experimental studies using the split Hopkinson pressure bar (SHPB) for evaluating the high strain rate properties of materials. It outlines key design guidelines and considerations for SHPB setups and describes data analysis methods across its four loading modes. Specialized versions of SHPB techniques and their novel applications are also introduced. A categorized summary of SHPB studies – organized by loading mode and material type – is presented in tabular form. Finally, the review discusses future developments and the potential for broad applications of SHPB techniques across various fields.
AbstractList This review provides a comprehensive overview of experimental studies using the split Hopkinson pressure bar (SHPB) for evaluating the high strain rate properties of materials. It outlines key design guidelines and considerations for SHPB setups and describes data analysis methods across its four loading modes. Specialized versions of SHPB techniques and their novel applications are also introduced. A categorized summary of SHPB studies – organized by loading mode and material type – is presented in tabular form. Finally, the review discusses future developments and the potential for broad applications of SHPB techniques across various fields.
Author Takashi YOKOYAMA
Author_xml – sequence: 1
  fullname: Takashi YOKOYAMA
  organization: Department of Mechanical Engineering,Okayama University
BookMark eNo9kMtOwzAURC1UJErpjg_wB5DiRxzH7EIFtFIlEBSJXXSbXFOX1gl2WsTfE8RjNWcxM4tzSga-8UjIOWcTzqVRl4C7iVAJYyw_IkORijThWr0Meua5SVKtxAkZx7jpG1LI3OT5kCwL-ogHhx-0sbRbI31qt66js6Z9cz42nj4EjHEfkF5DuKJLrNbeve8xXtCiPoCvvgl8TYu2H1bQucbHM3JsYRtx_Jsj8nx7s5zOksX93XxaLJINF9InmK3SmmWokZlVbhWCVbqywCtQiGgzxllttDQ1GG10lllUwjApmeUGRSZHZP7zu4kdvGLZBreD8FlC6Fy1xbI3UkJ9aPerkv2BUOW3of9OtYZQopdfz-Nj5g
ContentType Journal Article
Copyright The Japanese Society of Experimental Mechanics
Copyright_xml – notice: The Japanese Society of Experimental Mechanics
DOI 10.11395/aem.25-0008
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2424-175X
ExternalDocumentID article_aem_advpub_0_advpub_25_0008_article_char_en
GroupedDBID ADMLS
ALMA_UNASSIGNED_HOLDINGS
JSF
JSH
OK1
RJT
RZJ
ID FETCH-LOGICAL-j123n-e6b4d06e7e09b8f5eaf57cfa1ca5eeef6010d9739da979766fe5290330f19e263
ISSN 2189-4752
IngestDate Wed Sep 03 06:30:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j123n-e6b4d06e7e09b8f5eaf57cfa1ca5eeef6010d9739da979766fe5290330f19e263
OpenAccessLink https://www.jstage.jst.go.jp/article/aem/advpub/0/advpub_25-0008/_article/-char/en
ParticipantIDs jstage_primary_article_aem_advpub_0_advpub_25_0008_article_char_en
PublicationCentury 2000
PublicationDate 2025
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025
PublicationDecade 2020
PublicationTitle Advanced Experimental Mechanics
PublicationTitleAlternate AEM
PublicationYear 2025
Publisher The Japanese Society for Experimental Mechanics
Publisher_xml – name: The Japanese Society for Experimental Mechanics
References [4] Gama, B. A., Lopatnikov, S. L. and Gillespie, J. W. Jr.: Hopkinson bar experimental techique: a critical review, Appl. Mech. Rev., 57–4 (2004), 223–250.
[108] Song, Z., Wang, Z., Kim, H. and Ma, H.: Pulse shaper and dynamic compressive property investigation on ice using a large-sized modified split Hopkinson pressure bar, Lat. Am. J. Solids Struct., 13–3 (2016), 391–406.
[75] Tan, Z. H., Pang, B. J., Gai, B. Z., Wu, G. H. and Jia, B.: The dynamic mechanical response of SiC particulate reinforced 2024 aluminum matrix composites, Mater. Lett., 61–23~24 (2007), 4606–4609.
[84] Ravichandran, G., and Subhash, G.: Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar, J. Am. Ceram. Soc., 77–1 (1994), 263–267.
[126] Song, B. and Chen, W.: Dynamic compressive behavior of EPDM rubber under nearly uniaxial strain conditions, Trans. ASME. J. Eng. Mater. Technol., 126 (2004), 213–217.
[145] Walley, S. M., Field, J. E. and Palmer, S. J. P.: Impact sensitivity of propellants, Proc. Roy. Soc. Lond., A438 (1992), 571–583.
[11] Follansbee, P. S. and Franz, C.: Wave propagation in the split Hopkinson pressure bar, Trans. ASME. J. Eng. Mater. Technol., 105 (1983), 61–66.
[93] Osmar M. F., Md Akil, H. and Ahmad, Z. A.: Measurement and prediction of compressive properties of polymers at high strain rate loading, Mater. Des., 32 (2011), 4207–4215.
[101] Wang, Q. Z., Li, W. and Song, X. L.: A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB, Pure Appl. Geophys., 163 (2006), 1091–1100.
[146] Sivour, C. R., Gifford, M. J., Walley, S. M., Proud, W.G. and Field, J. E.: Particle size effects on the mechanical properties of a polymer bonded explosive, J. Mater. Sci., 39 (2004), 1255–1258.
[92] Garg, M., Mulliken, A.D. and Boyce, M. C.: Temperature rise in polymeric materials during high rate deformation. Trans. ASME. J. Appl. Mech., 75 (2008), 011009–1~8.
[32] Campbell, J. D. and Ferguson, W. G. : The temperature and strain-rate dependence of the shear strength of mild steel, Phil. Mag., 21 (1970), 63–82.
[99] Shang, R., Jiang, Y. and Li, B.: Obtaining dynamic complete stress-strain curves for rock using the split Hopkinson pressure bar technique, Int. J. Rock Mech. Min. Sci., 37 (2000), 983–992.
[45] Sasso, M., Mancini, E., Chiappini, G., Utzeri, M. and Amodio, D.: A 90-meter split Hopkinson tension-torsion bar: design, construction and first tests, J. Dyna. Behav. Mater., 11 (2025), 86–105.
[52] Feng, R. and Ramesh, K. T.: The rheology of lubricants at high shear rates. Trans. ASME. J. Tribol., 115 (1993), 640–649.
[141] Saraf, H., Ramesh, K. T., Lennon, A. M., Merkle, A. C. and Roberts, J. C.: Mechanical properties of soft human tissues under dynamic loading, J. Biomech., 40 (2007), 1960–1967.
[6] Othman, R.(editor): The Kolsky-Hopkinson Bar Machine, Springer International Publishing AG, (2018).
[30] Dowling, A. R., Harding, J. and Campbell, J. D.: The dynamic punching of metals, J. Inst. Metals, 98 (1970), 215 –224.
[22] Gilat, A., Seidt, J. D., Matrka, T. A. and Gardner, K. A.: A new device for tensile and compressive testing at intermediate strain rates, Exp. Mech., 59 (2019), 725–731.
[76] LiY, RameshK. T. and ChinE. S. C.: Plastic deformation and failure in A359 aluminum and an A359-SiCp MMC under quasistatic and high-strain-rate tension, J. Compos. Mater., 41–1 (2007), 27–40.
[159] Nemat-Nasser, S., Choi, J. Y., Guo, W.-G., Isaacs, J. B. and Taya, M.: High strain-rate, small strain response of a NiTi shape-memory alloy, Trans. ASME. J. Eng. Mater. Technol., 127 (2005), 83–89.
[85] Chen, W., Subhash, G. and Ravichandran, G.: Evaluation of ceramic specimen geometries used in a split Hopkinson pressure bar, DYMAT J., 1–3(1994), 193–210.
[151] Siviour, C. R., Walley, S. M., Proud, W. G. and Field, J. E.: Mechanical properties of SnPb and lead-free solders at high rates of strain, J . Phys. D.: Appl. Phys., 38 (2005), 4131–4139.
[29] Staab, G. H. and Gilat, A.: A direct-tension split Hopkinson bar for high strain-rate testing, Exp. Mech., 31 (1991), 232–235.
[2] JIS Z 2205: High deformation rate testing by split Hopkinson bar method (2019).
[3] Walley, S. M.: The origin of the Hopkinson bar technique, in The Kolsky-Hopkinson Bar Machine (edited by Othman, R.), Springer International Publishing AG (2018).
[42] Sogabe, Y. and Tsuzuki, M.: Identification of the dynamic properties of linear viscoelastic materials by the wave propagation testing, Bull. JSME., 29–254 (1986), 2410–2417.
[80] Lankford, J., Couque, H. and Nicholls, A.: Effect of dynamic loading on tensile strength and failure mechanisms in a SiC fibre reinforced ceramic matrix composite, J. Mater. Sci., 27 (1992), 930–936.
[138] Pellegrino, A., Tagarielli, V. L., Gerlach, R. and Petrinic, N.: The mechanical response of a syntactic polyurethane foam at low and high rates of strain, Int. J. Impact Eng., 75 (2015), 214–221.
[107] WuX and PrakashV: Dynamic compressive behavior of ice at cryogenic temperatures, Cold Reg. Sci. Technol., 118 (2015), 1–13.
[5] Chen, W. and Song, B.: Split Hopkinson (Kolsky) Bar, Desing, Testing and Applications, Springer Science + Business Media, (2011).
[27] ASTM–C496-96: Standard test method for splitting tensile strength of cylindrical concrete specimen, Annual Book of ASTM Standards, ASTM International (2017).
[14] Davies, R. M.: Stress waves in Solids, in Surveys in Mechanics (edited by Batchelor G. K and Davies, R. M.), Cambridge University Press (1956).
[28] LiL-Y and MolyneauxT. C. K: Dynamic constitutive equations and behaviour of brass at high strain rates, Proc. IMechE. Part C, J. Mech. Eng. Sci., 209 (1995), 287–293.
[13] Frew, D. J., Forrestal, M. J. and Chen, W.: Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar, Exp. Mech., 45 (2005),186–195.
[24] ASTM E8/E8M-09: Standard test methods for tension testing of metallic materials, Annual Book of ASTM Standards, ASTM International (2010).
[58] Chen, J. J., Guo, B. Q., Liu, H. B, Liu, H. and Chen, P. W.: Dynamic Brazilian test of brittle materials using the split Hopkinson pressure bar and digital image correlation, Strain, 50 (2014), 563–570.
[8] Kolsky, H.: An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc. B62 (1949), 676–700.
[56] Koeppel, B. J. and Subhash, G.: An experimental technique to investigate the dynamic indentation hardness of materials, Exp. Tech., 21 (1997), 16–18.
[70] Naik, N. K., Asmelash, A., Kavala, V. R. and Veeraju, Ch.: Interlaminar shear properties of polymer matrix composites: strain rate effect, Mech. Mater., 3–12 (2007), 1043–1052.
[123] Caetano, L., Grolleau, V., Galpin, B., Penin, A. and Capdeville, J.-D.: High strain rate out-of-plane compression of birch plywood from ambient to cryogenic temperature, Strain, 54–2 (2018), e12264.
[36] Li, Y. L., Ramesh, K.T. and Chin, E. S. C.: The mechanical response of an A359/SiCp MMC and the A359 aluminum matrix to dynamic shearing deformations, Mater. Sci. Eng., A382–1~2 (2004), 162–170.
[49] Ueda, K. and Umeda, A.: Characterization of shock accelerometers using Davies bar and laser interferometer, Exp. Mech., 35 (1995), 216–223.
[158] Belyaev, S., Petrov, A., Razov, A. and Volkov, A.: Mechanical properties of titanium nickelide at high strain rate loading, Mater. Sci. Eng., A378 (2004),122–124.
[12] Davies, R. M.: A critical study of the Hopkinson pressure bar, Phil. Trans. Roy. Soc. Lond., A240 (1948), 375–457.
[91] Nakai, K. and Yokoyama, T.: Strain rate dependence of compressive stress-strain loops of several polymers, J. Solid Mech. Mater. Eng., 4–4 (2008), 557–566.
[137] Ouellet, S., Cronin, D. and Worswick, M.: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions, Polym. Test., 25 (2006), 731–743.
[122] Moilanen, C. S., Saarenrinne, P., Engberg, B. A. and Björkqvist, T.: Image-based stress and strain measurement of wood in the split-Hopkinson pressure bar, Meas. Sci. Technol., 26–8 (2015) 085206.
[100] Frew, D. J., Forrestal, M. J. and Chen, W.: A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock material, Exp. Mech., 41 (2001), 40–46.
[51] Ramesh, K.T.: The short-time compressibility of elastohydrodynamic lubricants. Trans. ASME. J. Tribol., 113 (1991), 361-370.
[149] Xiao, Y. C., Sun, Y. and Wang, Z. J. :Investigating the static and dynamic tensile mechanical behaviour of polymer‐bonded explosives, Strain, 54–2 (2018), e12262.
[125] Cheng, M. and Chen, W.: Experimental investigation of the stress-stretch behavior of EPDM rubber with loading effects, Int. J. Solids Struct., 40 (2003), 4749–4768.
[71] Gowtham, H. L., Pothnis, J. R., Ravikumar, G. and Naik, N. K.: Dependency of dynamic interlaminar shear strength of composites on test technique used, Polym. Test, 42 (2015), 151–159.
[143] Lim, J., Hong, J., Chen, W. W. and Weerasooriya, T.: Mechanical response of pig skin under dynamic tensile loading, Int. J. Impact Eng., 38-2~3 (2011), 130–135.
[139] Shergold, O. A., Fleck, N. A. and Radford, D.: The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, Int. J. Impact Eng., 32 (2006), 1384–1402.
[10] Brizard, D., Ronel, S. and Jacquelin, E.: Estimating measurement uncertainty on stress-strain curves from SHPB, Exp. Mech., 57 (2017), 735–742.
[19] ASTM E9-89a: Standard test methods of compression testing of metallic materials at room temperature, Annual Book of ASTM Standards, ASTM International (1995).
[47] Gilat, A. and Wu, X.: Elevated temperature testing with the torsional split Hopkinson bar, Exp. Mech., 34 (1994), 166–170.
[128] Song, B., Ge, Y., Chen, W. W. and Weerasorriya, T.: Radial inertia effects in Kolsky bar testing of extra-soft specimens, Exp. Mech., 47 (2007), 659–676.
[77] Zhou, Y., Wang, Y., Jeelani, S. and Xia, Y.: Experimental study on tensile behavior of carbon fiber and carbon fiber reinforced aluminum at di
References_xml – reference: [32] Campbell, J. D. and Ferguson, W. G. : The temperature and strain-rate dependence of the shear strength of mild steel, Phil. Mag., 21 (1970), 63–82.
– reference: [112] Tang, T., Malvern, L. E. and Jenkins, D. A.: Rate effects in uniaxial dynamic compression of concrete, J. Eng. Mech., ASCE, 118–1 (1992), 108–124.
– reference: [60] El-Habak, A. M. A.: Compressive resistance of unidirectional-GFRP under high rate of loading, J. Compos. Technol. Res, 15–4 (1993), 311–317.
– reference: [140] Van Sligtenhorst, C., Cronin, D. S. and Brodland, G.W.: High strain rate compressive properties of bovine muscle tissue determined using a split Hopkinson bar apparatus, J. Biomech., 39 (2006),1852–1858.
– reference: [152] Qin, F., An, T. and Chen, N.: Tensile behaviors of lead-containing and lead-free solders at high strain rates, Trans. ASME. J. Electron. Packag., 131 (2009), 031001–1~5.
– reference: [80] Lankford, J., Couque, H. and Nicholls, A.: Effect of dynamic loading on tensile strength and failure mechanisms in a SiC fibre reinforced ceramic matrix composite, J. Mater. Sci., 27 (1992), 930–936.
– reference: [23] Nicholas, T.: Tensile testing of materials at high rates of strain, Exp. Mech., 21 (1981), 177–185.
– reference: [39] Zhao, H., Gary, G. and Klepaczko, J. R.: On the use of a viscoelastic split Hopkinson pressure bar, Int. J. Impact Eng., 19 (1997), 319–330.
– reference: [57] Gilat, A., Schmidt, T. E. and Walker, A. L.: Full field strain measurement in compression and tensile split Hopkinson bar experiments, Exp. Mech., 49 (2009), 291–302.
– reference: [97] Yokoyama, T. and Shimizu, H.: Evaluation of impact shear strength of adhesive joints with the split Hopkinson bar, JSME Int. J. Ser. A, 41–4 (1998), 503–509.
– reference: [135] Chen, W., Lu, F. and Winfree, N.: High-strain-rate compressive behavior of a rigid polyurethane foam with various densities, Exp. Mech., 42–1 (2002) , 65–73.
– reference: [87] Zheng, J., Li, H. and Hogan, J. D.: Strain-rate-dependent tensile response of an alumina ceramic: experiments and modeling, Int. J. Impact Eng., 173 (2023), 104487.
– reference: [138] Pellegrino, A., Tagarielli, V. L., Gerlach, R. and Petrinic, N.: The mechanical response of a syntactic polyurethane foam at low and high rates of strain, Int. J. Impact Eng., 75 (2015), 214–221.
– reference: [70] Naik, N. K., Asmelash, A., Kavala, V. R. and Veeraju, Ch.: Interlaminar shear properties of polymer matrix composites: strain rate effect, Mech. Mater., 3–12 (2007), 1043–1052.
– reference: [66] Gómez-del Rio, T., Barbero, E., Zaera, R. and Navarro, C.: Dynamic tensile behaviour at low temperature of CFRP using a split Hopkinson pressure bar, Compos. Sci. Technol.,65–1 (2005), 61–71.
– reference: [88] Fleck, N. A., Stronge, W. J. and Liu, J. H.: High strain-rate shear response of polycarbonate and polymethyl methacrylate, Proc. Roy. Soc. Lond., A429 (1990), 459–479.
– reference: [94] Buckley, C. P., Harding, J., Hou, J. P., Ruiz, C. and Trojanowswki, A.: Deformation of thermosetting resins at impact rates of strain, part I: experimental study, J. Mech. Phys. Solids., 49 (2001), 1517–1538.
– reference: [71] Gowtham, H. L., Pothnis, J. R., Ravikumar, G. and Naik, N. K.: Dependency of dynamic interlaminar shear strength of composites on test technique used, Polym. Test, 42 (2015), 151–159.
– reference: [98] Naik, N. K., Gadipatri, R. and Thoram, N. M: Shear properties of epoxy under high strain rate loading, Polym. Eng. Sci., 50-4(2010), 780–788.
– reference: [5] Chen, W. and Song, B.: Split Hopkinson (Kolsky) Bar, Desing, Testing and Applications, Springer Science + Business Media, (2011).
– reference: [118] Vural, M. and Ravichandran, G.:Dynamic response and energy dissipation characteristics of balsa wood: experiment and analysis, Int. J. Solids Struct., 40 (2003), 2147–2170.
– reference: [46] Eleiche, A.-S. M: Strain-rate history and temperature effects on the torsional-shear behavior of a mild steel, Exp. Mech., 21 (1981), 285–294.
– reference: [9] Graff, K. F.: Wave Motion in Elastic Solids, Oxford University Press, (1975).
– reference: [155] Liu, Y., Li, Y., Ramesh, K.T. and Humbeeck, J. V.: High strain rate deformation of martensitic NiTi shape memory alloy, Scr. Mater., 41–1 (1999), 89–95.
– reference: [47] Gilat, A. and Wu, X.: Elevated temperature testing with the torsional split Hopkinson bar, Exp. Mech., 34 (1994), 166–170.
– reference: [65] Gilat, A., Goldberg, R. K. and Roberts, G. D.: Experimental study of strain-rate-dependent behavior of carbon/epoxy composite, Compos. Sci. Technol.,62–10 ~11 (2002), 1469–1476.
– reference: [82] Subhash, G. and Nemat-Nasser, S.: Dynamic stress-induced transformation and texture formation in uniaxial compression of zirconia ceramics, J. Am. Ceram. Soc., 76–1 (1993), 153–165.
– reference: [116] Song, B., Chen, W. and Vincent, L.: Impact compressive response of dry sand, Mech. Mater., 41–6 (2009), 777–785.
– reference: [69] Hosur, M. V., Waliul Islam, S. M., Vaidya, U. K., Kumar, A., Dutta, P. K. and Jeelani, S.: Dynamic punch shear characterization of plain weave graphite/epoxy composites at room and elevated temperatures, Compos. Struct., 70 (2005), 295–307.
– reference: [12] Davies, R. M.: A critical study of the Hopkinson pressure bar, Phil. Trans. Roy. Soc. Lond., A240 (1948), 375–457.
– reference: [129] Nie, X., Song, B., Ge, Y., Chen, W. W. and Weerasooriya, T.: Dynamic tensile testing of soft materials, Exp. Mech., 49 (2009), 451–458.
– reference: [131] Subhash, G., Kwon, J., Mei, R. and Moore, D. F.: Non-Newtonian behavior of ballistic gelatin at high shear rates, Exp. Mech., 52 (2012), 551–560.
– reference: [30] Dowling, A. R., Harding, J. and Campbell, J. D.: The dynamic punching of metals, J. Inst. Metals, 98 (1970), 215 –224.
– reference: [62] Hosur, M. V., Alexander J., Vidya, U. K. and Jeelani, S.: High strain rate compression response of carbon/epoxy laminate composites, Compos. Struct., 52 (2001), 405–417.
– reference: [103] Dai, F., Huang, S., Xia, K. and Tan, Z.: Some fundamental issues in dynamic compression and tension tests using split Hopkinson bar, Rock Mech. Rock Eng., 43 (2010), 657–666.
– reference: [132] Richler, D. and Rittel, D.: On the testing of the dynamic mechanical properties of soft gelatins, Exp. Mech., 54 (2014), 805–815.
– reference: [134] YiF., ZhuZ., ZuF., HuS. and YiP.: Strain rate effects on the compressive property and the energy-absorbing capacity of aluminum alloy foam, Mater. Charact., 47 (2001), 417–422.
– reference: [2] JIS Z 2205: High deformation rate testing by split Hopkinson bar method (2019).
– reference: [17] Gray, G. T.: Classic split-Hopkinson pressure bar testing, in ASM Handbook, Vol. 8, Mechanical Testing and Evaluation, ASM International (2000).
– reference: [156] Chen, W. W., Wu, Q. P, Kang, J. H. and Winfree, N. A.: Compressive superelastic behavior of a NiTi shape memory alloy at strain rates of 0.001-750 s-1, Int. J. Solids Struct., 38 (2001), 8989–8998.
– reference: [124] Chen, W., Lu, F., Frew, D. J. and Forrestal, M. J.: Dynamic compression testing of soft materials. Trans. ASME. J. Appl. Mech., 69 (2002), 214–223.
– reference: [84] Ravichandran, G., and Subhash, G.: Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar, J. Am. Ceram. Soc., 77–1 (1994), 263–267.
– reference: [22] Gilat, A., Seidt, J. D., Matrka, T. A. and Gardner, K. A.: A new device for tensile and compressive testing at intermediate strain rates, Exp. Mech., 59 (2019), 725–731.
– reference: [115] Martin, B.E., Chen, W., Song, B. and Akers, S. A.: Moisture effects on the high strain-rate behavior of sand, Mech. Mater., 41-6 (2009), 786–798.
– reference: [126] Song, B. and Chen, W.: Dynamic compressive behavior of EPDM rubber under nearly uniaxial strain conditions, Trans. ASME. J. Eng. Mater. Technol., 126 (2004), 213–217.
– reference: [14] Davies, R. M.: Stress waves in Solids, in Surveys in Mechanics (edited by Batchelor G. K and Davies, R. M.), Cambridge University Press (1956).
– reference: [125] Cheng, M. and Chen, W.: Experimental investigation of the stress-stretch behavior of EPDM rubber with loading effects, Int. J. Solids Struct., 40 (2003), 4749–4768.
– reference: [77] Zhou, Y., Wang, Y., Jeelani, S. and Xia, Y.: Experimental study on tensile behavior of carbon fiber and carbon fiber reinforced aluminum at different strain rate, Appl. Compos. Mater., 14 (2007), 17–31.
– reference: [114] Gomez, J.T., Shukla, A. and Sharma, A. : Static and dynamic behavior of concrete and granite in tension with damage, Theor. Appl. Fract. Mech., 36 (2001), 37–49.
– reference: [54] Ogawa, K.: Impact friction test method by applying stress wave, Exp. Mech., 37 (1997), 398–402.
– reference: [95] Yokoyama, T.: Experimental determination of impact tensile properties of adhesive butt joints with the split Hopkinson bar, J. Strain Anal. Eng. Des., 38 (2003), 233–245.
– reference: [1] ISO 26203–1: Metallic materials–tensile testing at high strain rates, part 1: elastic-bar-type systems (2010).
– reference: [146] Sivour, C. R., Gifford, M. J., Walley, S. M., Proud, W.G. and Field, J. E.: Particle size effects on the mechanical properties of a polymer bonded explosive, J. Mater. Sci., 39 (2004), 1255–1258.
– reference: [36] Li, Y. L., Ramesh, K.T. and Chin, E. S. C.: The mechanical response of an A359/SiCp MMC and the A359 aluminum matrix to dynamic shearing deformations, Mater. Sci. Eng., A382–1~2 (2004), 162–170.
– reference: [38] Jiang, F. and Vecchio, K. S.: Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests, Appl. Mech. Rev., 62 (2009), 060802–1~39.
– reference: [28] LiL-Y and MolyneauxT. C. K: Dynamic constitutive equations and behaviour of brass at high strain rates, Proc. IMechE. Part C, J. Mech. Eng. Sci., 209 (1995), 287–293.
– reference: [58] Chen, J. J., Guo, B. Q., Liu, H. B, Liu, H. and Chen, P. W.: Dynamic Brazilian test of brittle materials using the split Hopkinson pressure bar and digital image correlation, Strain, 50 (2014), 563–570.
– reference: [59] Lin, C.: Elastic constants determination and deformation observation using Brazilian disk geometry, Exp. Mech., 50 (2010), 1025–1039.
– reference: [25] Harding, J. and Welsh, L. M.: A tensile testing technique for fibre-reinforced composites at impact rates of strain, J. Mater. Sci., 18 (1983), 1810–1826.
– reference: [21] Malinowski, J. Z., Klepaczko, J. R. and Kowalewski, Z. L.: Miniaturized compression test at very high strain rates by direct impact, Exp. Mech., 47 (2007), 451–463.
– reference: [106] Shazly, M., Prakash, V. and Lerch, B. A.: High strain-rate behavior of ice under uniaxial compression, Int. J. Solids Struct., 46-6 (2009), 1499–1515.
– reference: [40] Sawas, O., Brar, N. S. and Brockman, R. A.: Dynamic characterization of compliant materials using an all-polymeric split Hopkinson bar, Exp. Mech., 38 (1998), 204–210.
– reference: [48] Lennon, A. M. and Ramesh, K.T.: The influence of crystal structure on the dynamic behavior of materials at high temperatures, Int. J. Plast., 20 (2004), 269–290.
– reference: [63] Harding, J. and Welsh, L. M.: A tensile testing technique for fibre-reinforced composites at impact rates of strain, J. Mater. Sci., 18 (1983), 1810–1826.
– reference: [102] Xia, K., Nasseri, M. H. B., Mohanty, B., Lu, F., Chen, R. and Luo, S.N.: Effects of micro-structures on dynamic compression of barre granite, Int. J. Rock Mech. Min. Sci., 45–6 (2008), 879–887.
– reference: [[18] Ramesh, K. T.: High rates and impact experiments, Part D Applications 33, in Springer Handbook of Experimental Solid Mechanics (edited by Sharpe, W. N., Jr.), Springer Science + Business Media (2008).
– reference: [27] ASTM–C496-96: Standard test method for splitting tensile strength of cylindrical concrete specimen, Annual Book of ASTM Standards, ASTM International (2017).
– reference: [7] ASM Handbook: Vol. 8, Mechanical Testing and Evaluation, high strain rate testing (chaired by Nemat-Nasser), ASM International (2000).
– reference: [122] Moilanen, C. S., Saarenrinne, P., Engberg, B. A. and Björkqvist, T.: Image-based stress and strain measurement of wood in the split-Hopkinson pressure bar, Meas. Sci. Technol., 26–8 (2015) 085206.
– reference: [13] Frew, D. J., Forrestal, M. J. and Chen, W.: Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar, Exp. Mech., 45 (2005),186–195.
– reference: [90] Chen, W., Lu, F. and Cheng, M.: Tension and compression tests of two polymers under quasi-static and dynamic loading, Polym. Test, 21 (2002), 113–121.
– reference: [142] Song, B., Chen, W., Ge, Y. and Weerasooriya, T.: Dynamic and quasi-static compressive response of porcine muscle, J. Biomech., 40 (2007), 2999–3005.
– reference: [4] Gama, B. A., Lopatnikov, S. L. and Gillespie, J. W. Jr.: Hopkinson bar experimental techique: a critical review, Appl. Mech. Rev., 57–4 (2004), 223–250.
– reference: [26] LeBlanc, M. M. and Lassila, D. H.: Dynamic tensile testing of sheet material using the split-Hopkinson bar technique, Exp. Tech., 17 (1993), 37–42.
– reference: [52] Feng, R. and Ramesh, K. T.: The rheology of lubricants at high shear rates. Trans. ASME. J. Tribol., 115 (1993), 640–649.
– reference: [105] Kim, H. and Keune, J. N.: Compressive strength of ice at impact strain rates, J. Mater. Sci., 42 (2007), 2802–2806.
– reference: [72] Yadav, S., Chichili, D. R. and Ramesh, K. T.: The mechanical response of a 6061-T6 Al/Al2O3 metal matrix composite at high rates of deformation, Acta Metall. Mater., 43–12 (1995), 4453–4464.
– reference: [34] Bai, Y. and Dodd, B.: Adiabatic Shear Localization, Occurrence, Theories and Applications, Pergamon Press, (1992).
– reference: [81] Deng, Y. J., Chen, H., Chen, X. W. and Yao, Y.: Dynamic failure behaviour analysis of TiB2-B4C ceramic composites by split Hopkinson pressure bar testing, Ceram. Int., 47–15(2021), 22096–22107.
– reference: [85] Chen, W., Subhash, G. and Ravichandran, G.: Evaluation of ceramic specimen geometries used in a split Hopkinson pressure bar, DYMAT J., 1–3(1994), 193–210.
– reference: [128] Song, B., Ge, Y., Chen, W. W. and Weerasorriya, T.: Radial inertia effects in Kolsky bar testing of extra-soft specimens, Exp. Mech., 47 (2007), 659–676.
– reference: [141] Saraf, H., Ramesh, K. T., Lennon, A. M., Merkle, A. C. and Roberts, J. C.: Mechanical properties of soft human tissues under dynamic loading, J. Biomech., 40 (2007), 1960–1967.
– reference: [64] Eskandari, H. and Nemes, J. A. : Dynamic testing of composite laminates with a tensile split Hopkinson bar, J. Compos. Mater., 34–4 (2000), 260–273.
– reference: [55] Lin, Y. L., Qin, J. G., Chen, R., Zhao, P. D. and Lu, F. Y.: A technique for measuring dynamic friction coefficient under impact loading, Rev. Sci. Instrum., 85 (2014), 094501~8.
– reference: [139] Shergold, O. A., Fleck, N. A. and Radford, D.: The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, Int. J. Impact Eng., 32 (2006), 1384–1402.
– reference: [123] Caetano, L., Grolleau, V., Galpin, B., Penin, A. and Capdeville, J.-D.: High strain rate out-of-plane compression of birch plywood from ambient to cryogenic temperature, Strain, 54–2 (2018), e12264.
– reference: [33] Nemat-Nasser, S., Isaacs, J. B. and Liu, M.: Microstructure of high-strain, high-strain-rate deformed tantalum, Acta Mater., 45–4 (198), 1307–1325.
– reference: [74] Lee, W.-S., Sue, W.-C. and Lin, C.-F.: The effects of temperature and strain rate on the properties of carbon-fiber-reinforced 7075 aluminum alloy metal-matrix composite, Compos. Sci. Technol., 60–10 (2000), 1975–1983.
– reference: [133] Deshpande, V.S. and Fleck, N. A.: High strain rate compressive behaviour of aluminum alloy foams, Int. J. Impact Eng, 24 (2000), 277–298.
– reference: [76] LiY, RameshK. T. and ChinE. S. C.: Plastic deformation and failure in A359 aluminum and an A359-SiCp MMC under quasistatic and high-strain-rate tension, J. Compos. Mater., 41–1 (2007), 27–40.
– reference: [92] Garg, M., Mulliken, A.D. and Boyce, M. C.: Temperature rise in polymeric materials during high rate deformation. Trans. ASME. J. Appl. Mech., 75 (2008), 011009–1~8.
– reference: [93] Osmar M. F., Md Akil, H. and Ahmad, Z. A.: Measurement and prediction of compressive properties of polymers at high strain rate loading, Mater. Des., 32 (2011), 4207–4215.
– reference: [50] Ueda, K. and Umeda, A.: Dynamic response of strain gages up to 300 kHz, Exp. Mech., 38 (1998), 93–98.
– reference: [160] Huang, H., Durand, B, Sun, Q. P. and Zhao, H.: An experimental study of NiTi alloy under shear loading over a wide range of strain rates, Int. J. Impact Eng., 108 (2017), 402–413.
– reference: [29] Staab, G. H. and Gilat, A.: A direct-tension split Hopkinson bar for high strain-rate testing, Exp. Mech., 31 (1991), 232–235.
– reference: [145] Walley, S. M., Field, J. E. and Palmer, S. J. P.: Impact sensitivity of propellants, Proc. Roy. Soc. Lond., A438 (1992), 571–583.
– reference: [61] Woldesenbet, E. and Vinson, J. R.: Specimen geometry effects on high-strain-rate testing of graphite/epoxy composites, AIAA Journal, 37–9 (1999), 1102–1106.
– reference: [96] Yokoyama, T., Nakai, K. and Mohd Yatim, N. H.: High strain-rate compressive properties and constitutive modeling of bulk structural adhesives, J. Adhes., 88 (2012), 471–486.
– reference: [120] Holmgren, S.-E., Svensson, B.A., Gradin, P.A. and Lundberg, B.: An encapsulated split Hopkinson pressure bar for testing of wood at elevated strain rate, temperature, and pressure. Exp. Tech., 32–10 (2008), 44–50.
– reference: [101] Wang, Q. Z., Li, W. and Song, X. L.: A method for testing dynamic tensile strength and elastic modulus of rock materials using SHPB, Pure Appl. Geophys., 163 (2006), 1091–1100.
– reference: [151] Siviour, C. R., Walley, S. M., Proud, W. G. and Field, J. E.: Mechanical properties of SnPb and lead-free solders at high rates of strain, J . Phys. D.: Appl. Phys., 38 (2005), 4131–4139.
– reference: [86] Johnstone, C. and Ruiz, C.: Dynamic testing of ceramics under tensile stress, Int. J. Solids Struct., 32 (1995), 2647–2656.
– reference: [136] Song, B., Chen, W. and Frew, D. J.: Dynamic compressive response and failure behavior of an epoxy syntactic foam, J. Compos. Mater., 38–11 (2004), 915–936.
– reference: [3] Walley, S. M.: The origin of the Hopkinson bar technique, in The Kolsky-Hopkinson Bar Machine (edited by Othman, R.), Springer International Publishing AG (2018).
– reference: [20] Sen, O., Tekalur, S. A. and Maity, P.: On the use of non-cylindrical specimens in a split-Hopkinson pressure bar, J. Strain Anal. Eng. Des., 46 (2011), 866–876.
– reference: [119] Widehammar, S.: Stress-strain relationships for spruce wood: influence of strain rate, moisture content and loading direction, Exp. Mech., 44 (2004), 44–48.
– reference: [137] Ouellet, S., Cronin, D. and Worswick, M.: Compressive response of polymeric foams under quasi-static, medium and high strain rate conditions, Polym. Test., 25 (2006), 731–743.
– reference: [37] Yokoyama, T. and Kishida, K.: A novel impact three-point bend test method for determining dynamic fracture-initiation toughness, Exp. Mech., 29 (1989), 188–194.
– reference: [51] Ramesh, K.T.: The short-time compressibility of elastohydrodynamic lubricants. Trans. ASME. J. Tribol., 113 (1991), 361-370.
– reference: [113] Tedesco, J.W., Ross, C.A. and Kuennen, S.T.: Experimental and numerical analysis of high strain rate splitting tensile tests, ACI Mater, 90–2 (1993),162–169.
– reference: [121] Allazadeh, M. R. and Wosu, S. N.: High strain rate compressive tests on wood, Strain, 48 (2012),101–107.
– reference: [109] Zhang, Y., Wang, Q., Han, D., Xue, Y., Lu, S. and Wang, P.: Dynamic splitting tensile behavior of distilled-water and river-water ice using a modified SHPB setup, Int. J. Impact Eng., 145 (2020), 103686.
– reference: [154] Iqbal, N., Xue, P., Wang, B. and Li, Y.: On the high strain rate behavior of 63-37 Sn-Pb eutectic solders with temperature effects, Int. J. Impact Eng., 74 (2014), 126–131.
– reference: [41] Tamaogi, T., Sogabe, Y., Wu, Z. and Yokoyama, T.: Identification of mechanical models for golf ball materials using a viscoelastic split Hopkinson pressure bar, J. Dyn. Behav. Mater., 3 (2021), 377–390.
– reference: [83] Staehler, J.M., Predebon, W. W., Pletka, B. and Lankford, J.: Testing of high-strength ceramics with the split Hopkinson pressure bar, J. Am. Ceram. Soc., 76–2 (1993), 536–538.
– reference: [157] Song, B. and Chen, W.: Loading and unloading split Hopkinson pressure bar pulse-shaping techniques for dynamic hysteretic loops, Exp. Mech., 44 (2004), 622–627.
– reference: [149] Xiao, Y. C., Sun, Y. and Wang, Z. J. :Investigating the static and dynamic tensile mechanical behaviour of polymer‐bonded explosives, Strain, 54–2 (2018), e12262.
– reference: [[16] Davies, E. D. H. and Hunter, S. C.: The dynamic compression testing of solids by the method of the split Hopkinson pressure bar, J. Mech. Phys. Solids, 11 (1963), 155–179.
– reference: [78] Dai, L. H., Bai, Y. L. and Lee, S.-W. R.: Experimental investigation of the shear strength of a unidirectional carbon/aluminum composite under dynamic torsional loading, Compos. Sci. Technol., 58 (1998), 1667–1673.
– reference: [104] Zhou, Z., Li, X., Zou, Y., Jiang, Y., and Li, G.: Dynamic Brazilian tests of granite under coupled static and dynamic loads, Rock Mech. Rock Eng., 47 (2014), 495–505.
– reference: [89] LiZ and LambrosJ: Strain rate effects on the thermomechanical behavior of polymers, Int. J. Solids Struct., 38 (2001), 3549–3562.
– reference: [148] Grantham, S. G., Siviour, C. R., Proud, W. G. and Field, J. E.: High-strain rate Brazilian testing of an explosive simulant using speckle metrology, Meas. Sci. Technol., 15 (2004),1–4.
– reference: [45] Sasso, M., Mancini, E., Chiappini, G., Utzeri, M. and Amodio, D.: A 90-meter split Hopkinson tension-torsion bar: design, construction and first tests, J. Dyna. Behav. Mater., 11 (2025), 86–105.
– reference: [19] ASTM E9-89a: Standard test methods of compression testing of metallic materials at room temperature, Annual Book of ASTM Standards, ASTM International (1995).
– reference: [111] Ross, C. A., Thompson, P. Y. and Tedesco, J. W.: Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression, ACI Mater., 86 (1989), 475–481.
– reference: [147] Balzer, J.E., Siviour, C. R., Walley, S. M., Proud, W, G. and Field, J. E.: Behaviour of ammonium perchlorate-based propellants and a polymer-bonded explosive under impact loading, Proc. Roy. Soc. Lond., A460 (2004), 781–806.
– reference: [159] Nemat-Nasser, S., Choi, J. Y., Guo, W.-G., Isaacs, J. B. and Taya, M.: High strain-rate, small strain response of a NiTi shape-memory alloy, Trans. ASME. J. Eng. Mater. Technol., 127 (2005), 83–89.
– reference: [108] Song, Z., Wang, Z., Kim, H. and Ma, H.: Pulse shaper and dynamic compressive property investigation on ice using a large-sized modified split Hopkinson pressure bar, Lat. Am. J. Solids Struct., 13–3 (2016), 391–406.
– reference: [43] Jia, D. and Ramesh, K. T.: A rigorous assessment of the benefits of miniaturization in the Kolsky bar system, Exp. Mech., 44 (2004), 445–454.
– reference: [68] Nemes, J. A., Eskandari, H. and Rakitch, L.: Effect of laminate parameters on penetration of graphite/epoxy composites, Int. J. Impact Eng., 21–1~2 (1998), 97–112.
– reference: [158] Belyaev, S., Petrov, A., Razov, A. and Volkov, A.: Mechanical properties of titanium nickelide at high strain rate loading, Mater. Sci. Eng., A378 (2004),122–124.
– reference: [6] Othman, R.(editor): The Kolsky-Hopkinson Bar Machine, Springer International Publishing AG, (2018).
– reference: [99] Shang, R., Jiang, Y. and Li, B.: Obtaining dynamic complete stress-strain curves for rock using the split Hopkinson pressure bar technique, Int. J. Rock Mech. Min. Sci., 37 (2000), 983–992.
– reference: [24] ASTM E8/E8M-09: Standard test methods for tension testing of metallic materials, Annual Book of ASTM Standards, ASTM International (2010).
– reference: [150] Gilat, A. and Krishna, K.: The effects of strain rate and thickness on the response of thin layers of solder loaded in pure shear, Trans. ASME. J. Electron. Packag., 119–2 (1997), 81–84.
– reference: [127] Song, B. and Chen, W. : Split Hopkinson pressure bar techniques for characterizing soft materials, Lat. Am. J. Solids Struct., 2 (2005),113–152.
– reference: [49] Ueda, K. and Umeda, A.: Characterization of shock accelerometers using Davies bar and laser interferometer, Exp. Mech., 35 (1995), 216–223.
– reference: [56] Koeppel, B. J. and Subhash, G.: An experimental technique to investigate the dynamic indentation hardness of materials, Exp. Tech., 21 (1997), 16–18.
– reference: [100] Frew, D. J., Forrestal, M. J. and Chen, W.: A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock material, Exp. Mech., 41 (2001), 40–46.
– reference: [110] Song, Z., Chen, R., Guo, D. and Yu, C.: Experimental investigation of dynamic shear mechanical properties and failure criterion of ice at high strain rates, Int. J. Impact Eng, 166 (2022), 104254.
– reference: [73] Dai, L. H. and Bai, Y. L.: Transverse shear strength of unidirectional carbon fiber reinforced aluminum matrix composite under static and dynamic loadings, J. Compos. Mater., 32 (1998), 246–257.
– reference: [42] Sogabe, Y. and Tsuzuki, M.: Identification of the dynamic properties of linear viscoelastic materials by the wave propagation testing, Bull. JSME., 29–254 (1986), 2410–2417.
– reference: [10] Brizard, D., Ronel, S. and Jacquelin, E.: Estimating measurement uncertainty on stress-strain curves from SHPB, Exp. Mech., 57 (2017), 735–742.
– reference: [53] Clyens, S., Evans, C. R. and Johnson, K. L.: Measurement of the viscosity of supercooled liquids at high shear rates with a Hopkinson torsion bar, Proc. Roy. Soc. Lond., A 381 (1982), 195–214.
– reference: [8] Kolsky, H.: An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc. B62 (1949), 676–700.
– reference: [31] Roessig, K. M. and Mason, J. J.: Adiabatic shear localization in the dynamic punch test, part I: experimental investigation, Int. J. Plast., 15 (1999), 241–262.
– reference: [35] Gilat, A.: Torsional Kolsky bar testing, in ASM Handbook, Vol. 8, Mechanical Testing and Evaluation, 505 –515, ASM International (2000).
– reference: [143] Lim, J., Hong, J., Chen, W. W. and Weerasooriya, T.: Mechanical response of pig skin under dynamic tensile loading, Int. J. Impact Eng., 38-2~3 (2011), 130–135.
– reference: [91] Nakai, K. and Yokoyama, T.: Strain rate dependence of compressive stress-strain loops of several polymers, J. Solid Mech. Mater. Eng., 4–4 (2008), 557–566.
– reference: [11] Follansbee, P. S. and Franz, C.: Wave propagation in the split Hopkinson pressure bar, Trans. ASME. J. Eng. Mater. Technol., 105 (1983), 61–66.
– reference: [107] WuX and PrakashV: Dynamic compressive behavior of ice at cryogenic temperatures, Cold Reg. Sci. Technol., 118 (2015), 1–13.
– reference: [44] Song, B., Syn, C. J., Grupido, C.L., Chen, W. and Lu, W.-Y.: A long split Hopkinson pressure bar (LSHPB) for intermediate-rate characterization of soft materials, Exp. Mech., 48 (2008), 809–815.
– reference: [79] Lankford, J.: Dynamic compressive fracture in fiber-reinforced ceramic matrix composites, Mater. Sci. Eng., A107 (1989), 261–268.
– reference: [75] Tan, Z. H., Pang, B. J., Gai, B. Z., Wu, G. H. and Jia, B.: The dynamic mechanical response of SiC particulate reinforced 2024 aluminum matrix composites, Mater. Lett., 61–23~24 (2007), 4606–4609.
– reference: [130] Salisbury, C. P. and Cronin, D. S.: Mechanical properties of ballistic gelatin at high deformation rates, Exp. Mech., 49 (2009), 829–840.
– reference: [144] Sanborn, B., Nie, X., Chen, W. and Weerasooriya, T.: High strain rate pure shear and axial compressive response of porcine lung tissue, Trans. ASME. J. Appl. Mech., 80 (2013), 011029-1~6.
– reference: [67] Dong, L. and Harding, J.: A single-lap shear specimen for determining the effect of strain rate on the interlaminar shear strength of carbon fibre-reinforced laminates, Composites, 25–2 (1994), 129–138.
– reference: [15] Ravichandran, G. and Subhash, G.: Critical appraisal of limiting strain rates for compression testing of ceramics in a split Hopkinson pressure bar, J. Am. Ceram. Soc., 77 (1994), 263–267.
– reference: [153] Qin, F., An, T. and Chen, N.: Strain rate effect and rate-dependent constitutive models of lead-based and lead-free solders, Trans. ASME. J. Appl. Mech., 77 (2010), 011008–1~11.
– reference: [117] Yang, F., Ma, H., Jing, L., Zhao, L. and Wang, Z. : Dynamic compressive and splitting tensile tests on mortar using split Hopkinson pressure bar technique, Lat. Am. J. Solids Struct., 12 (2015),730–746.
SSID ssj0003238988
Score 2.2781286
Snippet This review provides a comprehensive overview of experimental studies using the split Hopkinson pressure bar (SHPB) for evaluating the high strain rate...
SourceID jstage
SourceType Publisher
StartPage 25-0008
SubjectTerms High strain rate testing
Hopkinson bar analysis
Loading modes
Novel applications
One-dimensional elastic wave theory
Specimen design
Title A Review of the Split Hopkinson Pressure Bar: Techniques, Advances, and Applications
URI https://www.jstage.jst.go.jp/article/aem/advpub/0/advpub_25-0008/_article/-char/en
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Advanced Experimental Mechanics, 2025, pp.25-0008
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgLCwIBIhveWADl3zZqdkCFCGgMFCkMkVOfR5AFASFgV_POY7TgBACxBJFruVYfunl2XfvjpDtNNAhgJEMDXDEktCETEZGM469YwWBBmH1zr0LcXKdnA74YBLWXKpLxkV7-PalruQvqGIb4mpVsr9Ath4UG_Ae8cUrIozXH2Gc-bz4laP_Chnl2Ae-IKxO-_cE1qtQn6PbhK2uBLFz_z_7AM6s4ctuctbMhwl0m9UAemA1w41Y-b66s4WZdm4uzy5vvCmvzhOc6rhda9HwC20rX36IGf1m9NJQIUuQLEldJto2uLYkShhSk0HTOHKrYe98bbhjaZNcKLhvN7p9SoVdLXSOvXKlX3HSeeBvIm796J3c97GiNXxHpslMlKYhb5GZ7Kh3flWfv8XIVWRZlrSevtdF4FT2GhNBbnKLTN1H-ZXEoz9P5qodA83cExfIFIwWST-jDnr6YChCT0voaQ099dBThH6fToDfpR72XYqg0yboS-T6uNs_PGFVgQx2i4RjxEAUiQ4EpBDIomM4KMPToVHhUHHAf6DdbGuZxlIrmSLvFAZ4JIM4DkwoIRLxMmmNHkawQqgGHoLGzYsIdAL2Z1HguoWKCwm4CKvkwC1C_uiyoOR_AGPtPwZZJ7P2tXXHYBukNX56gU0khuNiq8L4HdZIcD0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Review+of+the+Split+Hopkinson+Pressure+Bar%3A+Techniques%2C+Advances%2C+and+Applications&rft.jtitle=Advanced+Experimental+Mechanics&rft.au=Takashi+YOKOYAMA&rft.date=2025&rft.pub=The+Japanese+Society+for+Experimental+Mechanics&rft.issn=2189-4752&rft.eissn=2424-175X&rft.spage=25-0008&rft_id=info:doi/10.11395%2Faem.25-0008&rft.externalDocID=article_aem_advpub_0_advpub_25_0008_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2189-4752&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2189-4752&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2189-4752&client=summon