An Application of Genetic Algorithm for Facility Location Problem with A-distance in a Competitive Environment

About studies of optimal location problem with competitiveness to other facilities, the distance between facilities and their customers is usually represented as Euclid distance. However, there are often cases that facility location given for facility location model with Euclid distance does not sui...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Institute of Systems, Control and Information Engineers Vol. 20; no. 3; pp. 106 - 113
Main Authors KATO, Kosuke, KATAGIRI, Hideki, UNO, Takeshi, SAKAWA, Masatoshi, CHO, Kazutaka
Format Journal Article
LanguageJapanese
Published THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE) 15.03.2007
Subjects
Online AccessGet full text
ISSN1342-5668
2185-811X
DOI10.5687/iscie.20.106

Cover

Loading…
Abstract About studies of optimal location problem with competitiveness to other facilities, the distance between facilities and their customers is usually represented as Euclid distance. However, there are often cases that facility location given for facility location model with Euclid distance does not suit the actual condition of facility location in city area. In this paper, we suggest a new location model by introducing A-distance, proposed by Widmayer etc., which is the distance that directions that customers can move is limited. Because the formulated optimal location problem is difficult to solve immediately, we reformulate the problem to combinational problem to find one of the optimal solutions for the problem. The reformulated problem can be solved strictly, but it requires enormous computational time and costs for large scale problems. We construct an efficient solving method by applying genetic algorithm for non-linear 0-1 programming problem. Moreover, we show efficiency of the algorithm by using some numerical examples.
AbstractList About studies of optimal location problem with competitiveness to other facilities, the distance between facilities and their customers is usually represented as Euclid distance. However, there are often cases that facility location given for facility location model with Euclid distance does not suit the actual condition of facility location in city area. In this paper, we suggest a new location model by introducing A-distance, proposed by Widmayer etc., which is the distance that directions that customers can move is limited. Because the formulated optimal location problem is difficult to solve immediately, we reformulate the problem to combinational problem to find one of the optimal solutions for the problem. The reformulated problem can be solved strictly, but it requires enormous computational time and costs for large scale problems. We construct an efficient solving method by applying genetic algorithm for non-linear 0-1 programming problem. Moreover, we show efficiency of the algorithm by using some numerical examples.
Author KATO, Kosuke
SAKAWA, Masatoshi
KATAGIRI, Hideki
UNO, Takeshi
CHO, Kazutaka
Author_xml – sequence: 1
  fullname: KATO, Kosuke
  organization: Graduate School of Engineering, Hiroshima University
– sequence: 1
  fullname: KATAGIRI, Hideki
  organization: Graduate School of Engineering, Hiroshima University
– sequence: 1
  fullname: UNO, Takeshi
  organization: Graduate School of Engineering, Hiroshima University
– sequence: 1
  fullname: SAKAWA, Masatoshi
  organization: Graduate School of Engineering, Hiroshima University
– sequence: 1
  fullname: CHO, Kazutaka
  organization: Graduate School of Engineering, Hiroshima University
BookMark eNo9UMFqwzAUM6ODdV1v-wD_QDo_O3btYyhtNyhshw12Cy-u07okdnBCR_9-YS27SAcJIemRTEIMjpBnYAup9PLF99a7BWcLYOqOTDlomWmA7wmZgsh5JpXSD2Te975iApY5gJBTEopAi65rvMXBx0BjTbcuuMFbWjSHmPxwbGkdE92g9Y0fLnQXb9aPFKvGtfRn9NAi2_t-wGAd9YEiXcW2G1MGf3Z0Hc4-xdC6MDyR-xqb3s1vPCNfm_Xn6jXbvW_fVsUuOwGYkCEDBczIvEawwqCqJXLl8lygMJViHGtURnNAxrUBA3vD0XBVKQ5SaxAzsr7mnsZSB1d2ybeYLiWmcVnjyr-zwGhdclaKK4y__ev2iKl0QfwCRU5p_Q
ContentType Journal Article
Copyright The Institute of Systems, Control and Information Engineers
Copyright_xml – notice: The Institute of Systems, Control and Information Engineers
DOI 10.5687/iscie.20.106
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2185-811X
EndPage 113
ExternalDocumentID article_iscie1988_20_3_20_3_106_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j119n-a01610954fa1c39a6f5a26e443a39b602afa69821a0289191d92a926b62158813
ISSN 1342-5668
IngestDate Wed Sep 03 06:20:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j119n-a01610954fa1c39a6f5a26e443a39b602afa69821a0289191d92a926b62158813
OpenAccessLink https://www.jstage.jst.go.jp/article/iscie1988/20/3/20_3_106/_article/-char/en
PageCount 8
ParticipantIDs jstage_primary_article_iscie1988_20_3_20_3_106_article_char_en
PublicationCentury 2000
PublicationDate 2007/03/15
PublicationDateYYYYMMDD 2007-03-15
PublicationDate_xml – month: 03
  year: 2007
  text: 2007/03/15
  day: 15
PublicationDecade 2000
PublicationTitle Transactions of the Institute of Systems, Control and Information Engineers
PublicationTitleAlternate Transactions of the Institute of Systems, Control and Information Engineers
PublicationYear 2007
Publisher THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)
Publisher_xml – name: THE INSTITUTE OF SYSTEMS, CONTROL AND INFORMATION ENGINEERS (ISCIE)
References [3] S. L. Hakimi : On locating new facilities in a competitive environment; EJOR, Vol. 12, pp. 29-35 (1983)
[7] H. Martini and A. Schobel : Median hyperplanes in normed spaces-A survey; Discrete Applied Mathematics, Vol. 89, pp. 181-195 (1998)
[14] 宇野 : 競合環境下での施設配置問題に関する数理的研究;平成13年度大阪大学大学院工学研究科学位論文 (2002)
[4] 花岡 : 多次元競合施設配置問題に対する発見的解法;平成16年度広島大学工学部卒業論文 (2005)
[11] 坂和 : 遺伝的アルゴリズム, 朝倉書店 (1995)
[17] R. E. Wendell and R. D. McKelvey : New perspectives in competitive location theory; EJOR, Vol. 6, pp. 174-182 (1981)
[18] G. O. Wesolowsky : Rectangular distance location under the minimax optimality criterion; TRANS. SCI., Vol. 6, pp. 103-113 (1972)
[9] 松冨 : 緊急施設配置問題の数理的研究;平成10年度広島大学大学院工学研究科学位論文 (1999)
[12] 坂和 : 数理計画法の基礎, 森北出版 (1999)
[16] 渡邉 : 多目的非線形整数計画問題に対する遺伝的アルゴリズムによる対話型ファジィ満足化手法;平成13年度広島大学大学院工学研究科修士論文 (2002)
[19] P. Widmayer, Y. F. Wu and C. K. Wong : On some distance problems in fixed orientations; SIAM J. COMPUT., Vol. 16, pp. 728-746 (1987)
[8] T. Matsutomi and H. ishii : Minimax location problem with A-distance; Journal of the Operations Research Society of Japan, Vol. 41, pp. 181-195 (1998)
[13] 塩出 : 競合する施設の配置について;BASIC数学7月号, pp.41-44 (1991)
[2] R. L. Francis : A geometrical solution procedure for a rectilinear minimax location problem; AIIE TRANS., Vol. 4, pp. 328-332 (1972)
[5] H. Hotelling : Stability in competition; The Economic Journal, Vol. 30, pp. 41-57 (1929)
[15] 宇野, 坂和 : 競合施設配置モデルに対するタブー探索の応用;電子情報通信学会論文誌, Vol.J87-A, No.11, pp.1403-1410 (2004)
[6] 石井 : 配置問題における新しい距離の展開;BASIC数学7月号, pp.33-40 (1991)
[10] 岡部, 鈴木 : 最適配置の数理, 朝倉書店 (1992)
[1] Z. Drezner : Competitive location strategies for two facilities; Regional Science and Urban Economics, Vol. 12, pp. 485-493 (1982)
References_xml – reference: [6] 石井 : 配置問題における新しい距離の展開;BASIC数学7月号, pp.33-40 (1991)
– reference: [8] T. Matsutomi and H. ishii : Minimax location problem with A-distance; Journal of the Operations Research Society of Japan, Vol. 41, pp. 181-195 (1998)
– reference: [14] 宇野 : 競合環境下での施設配置問題に関する数理的研究;平成13年度大阪大学大学院工学研究科学位論文 (2002)
– reference: [18] G. O. Wesolowsky : Rectangular distance location under the minimax optimality criterion; TRANS. SCI., Vol. 6, pp. 103-113 (1972)
– reference: [9] 松冨 : 緊急施設配置問題の数理的研究;平成10年度広島大学大学院工学研究科学位論文 (1999)
– reference: [10] 岡部, 鈴木 : 最適配置の数理, 朝倉書店 (1992)
– reference: [2] R. L. Francis : A geometrical solution procedure for a rectilinear minimax location problem; AIIE TRANS., Vol. 4, pp. 328-332 (1972)
– reference: [13] 塩出 : 競合する施設の配置について;BASIC数学7月号, pp.41-44 (1991)
– reference: [19] P. Widmayer, Y. F. Wu and C. K. Wong : On some distance problems in fixed orientations; SIAM J. COMPUT., Vol. 16, pp. 728-746 (1987)
– reference: [3] S. L. Hakimi : On locating new facilities in a competitive environment; EJOR, Vol. 12, pp. 29-35 (1983)
– reference: [4] 花岡 : 多次元競合施設配置問題に対する発見的解法;平成16年度広島大学工学部卒業論文 (2005)
– reference: [7] H. Martini and A. Schobel : Median hyperplanes in normed spaces-A survey; Discrete Applied Mathematics, Vol. 89, pp. 181-195 (1998)
– reference: [11] 坂和 : 遺伝的アルゴリズム, 朝倉書店 (1995)
– reference: [5] H. Hotelling : Stability in competition; The Economic Journal, Vol. 30, pp. 41-57 (1929)
– reference: [17] R. E. Wendell and R. D. McKelvey : New perspectives in competitive location theory; EJOR, Vol. 6, pp. 174-182 (1981)
– reference: [1] Z. Drezner : Competitive location strategies for two facilities; Regional Science and Urban Economics, Vol. 12, pp. 485-493 (1982)
– reference: [12] 坂和 : 数理計画法の基礎, 森北出版 (1999)
– reference: [15] 宇野, 坂和 : 競合施設配置モデルに対するタブー探索の応用;電子情報通信学会論文誌, Vol.J87-A, No.11, pp.1403-1410 (2004)
– reference: [16] 渡邉 : 多目的非線形整数計画問題に対する遺伝的アルゴリズムによる対話型ファジィ満足化手法;平成13年度広島大学大学院工学研究科修士論文 (2002)
SSID ssib031741135
ssib006582340
ssj0000602769
Score 1.6955776
Snippet About studies of optimal location problem with competitiveness to other facilities, the distance between facilities and their customers is usually represented...
SourceID jstage
SourceType Publisher
StartPage 106
SubjectTerms A-distance
competitiveness
facility location
genetic algorithm
linear programming
Title An Application of Genetic Algorithm for Facility Location Problem with A-distance in a Competitive Environment
URI https://www.jstage.jst.go.jp/article/iscie1988/20/3/20_3_106/_article/-char/en
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Institute of Systems, Control and Information Engineers, 2007/03/15, Vol.20(3), pp.106-113
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF615QIHxFO8tRLckIPXa2-8FySrSmhom0DjiHKy1i-apLURSS78emZ2_dgiDhQuVrR-aOP5vP5m_M0MIW9kkOeucnOnlCl3fL_kjpRl7gSMZzl3UxXmWuU7FUcL_-N5cL63_9pSLe226SD7-ce8kn-xKoyBXTFL9gaW7S4KA_Ab7AtbsDBs_8rGUWVYZNbxPqwijSVYo8tvNbj9F1daRjhW2VLT7ZO6OfST6SNjwrCRkyOLxEd8Wb1Veo3A5DMUFY36RDibx8Z9m_FNKzO4pjtoKqHrOGyjhjfK4y5bsiuF2H9OiuKZXnjqzW5dWKPRh8nZRL8kl3mxXrZ7FlN9eKzWxeaiG51Hx9GXyOQhbdS2bne1oY0hartMcqcGI2qeJtN5PIkX8QhFUPOv83h0qiWNh7NpfDY70TW4JlNwmE9Nl6K2HNdcE3QM1LURFbO-cx98b2E6-QwKPQYkJ3BCpjv3dC8Fz7XAz60VnrnCIgvMJNL-_h4KBEZyxphXjaVYB91J1yp7N7hJ9GFMhmHiuQk3Gzgjafdj_h3AfZ_c8sAXwv4kx5-tRTMIPd4X7AE-6MOsgi7Q6ArXG-rWjt2fNwkgOMl39hSBhK0Aba2cUTOs-B6527hGNDLzuU_2VuoBuWMVzHxIqqiiFuJpXdIG8bRDPAWE0RbxtEU8bRBPEfG0RzxdVlRRC_HUQvwjshiP4sMjp-kY4qwYk5Wj0IEBp8EvFcu4VKIMlCcK3-eKyxRuhCqVkKHHFH5gZ5Ll0lPSE6kA5huGjD8mB1VdFU8IVQrLThW6SR8GAWTqS5a6QqYKVjVv-JS8Nzcr-W7KwiQ3NOez_73Ac3K7f2hekIPtj13xEhjyNn2lEfILmc-6nA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Application+of+Genetic+Algorithm+for+Facility+Location+Problem+with+A-distance+in+a+Competitive+Environment&rft.jtitle=Transactions+of+the+Institute+of+Systems%2C+Control+and+Information+Engineers&rft.au=KATO%2C+Kosuke&rft.au=KATAGIRI%2C+Hideki&rft.au=UNO%2C+Takeshi&rft.au=SAKAWA%2C+Masatoshi&rft.date=2007-03-15&rft.pub=THE+INSTITUTE+OF+SYSTEMS%2C+CONTROL+AND+INFORMATION+ENGINEERS+%28ISCIE%29&rft.issn=1342-5668&rft.eissn=2185-811X&rft.volume=20&rft.issue=3&rft.spage=106&rft.epage=113&rft_id=info:doi/10.5687%2Fiscie.20.106&rft.externalDocID=article_iscie1988_20_3_20_3_106_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1342-5668&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1342-5668&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1342-5668&client=summon