初期器械固定における腰椎前縦靭帯損傷の影響 3次元有限要素法による研究
成人脊柱変形に対して側方進入腰椎椎体間固定術を併用した手術による術中合併症の一つとして腰椎前縦靭帯(anterior longitudinal ligament;ALL)損傷があり,近年,これに伴う術後instrumentation failure症例が報告されている.3次元有限要素法を用いてALL損傷によるinstrumentへの影響を検討した.CT画像から3次元有限要素法腰椎モデルを作成し,至適にinstrumentを設置されたL1-S1固定モデルも作成した.これらに対して実際の手術手技のようにL3/4高位で椎間板部分切除を模擬し,同高位でALLを25%ずつ損傷させたモデルとした.これらの...
Saved in:
Published in | 岩手医学雑誌 Vol. 74; no. 2; pp. 47 - 59 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
岩手医学会
01.06.2022
|
Online Access | Get full text |
ISSN | 0021-3284 2434-0855 |
DOI | 10.24750/iwateishi.74.2_47 |
Cover
Loading…
Abstract | 成人脊柱変形に対して側方進入腰椎椎体間固定術を併用した手術による術中合併症の一つとして腰椎前縦靭帯(anterior longitudinal ligament;ALL)損傷があり,近年,これに伴う術後instrumentation failure症例が報告されている.3次元有限要素法を用いてALL損傷によるinstrumentへの影響を検討した.CT画像から3次元有限要素法腰椎モデルを作成し,至適にinstrumentを設置されたL1-S1固定モデルも作成した.これらに対して実際の手術手技のようにL3/4高位で椎間板部分切除を模擬し,同高位でALLを25%ずつ損傷させたモデルとした.これらの伸展方向への変位量(mm)と椎間板,スクリュー周囲の椎体,instrumentへのかかるvon Mises 応力(MPa)を評価した.ALL損傷率が上昇するほど伸展方向への変位量が増加した.同様に椎間板,スクリュー周囲の椎体,instrumentへの応力が上昇した.またinstrumentへの応力は損傷高位と隣接する高位においても上昇した.ALL損傷の程度が増加するほど脊椎不安定性が生じ組織とinstrumentへの負荷が上昇した.ALL損傷は術後instrumentation failureのリスクとなり得る. |
---|---|
AbstractList | 成人脊柱変形に対して側方進入腰椎椎体間固定術を併用した手術による術中合併症の一つとして腰椎前縦靭帯(anterior longitudinal ligament;ALL)損傷があり,近年,これに伴う術後instrumentation failure症例が報告されている.3次元有限要素法を用いてALL損傷によるinstrumentへの影響を検討した.CT画像から3次元有限要素法腰椎モデルを作成し,至適にinstrumentを設置されたL1-S1固定モデルも作成した.これらに対して実際の手術手技のようにL3/4高位で椎間板部分切除を模擬し,同高位でALLを25%ずつ損傷させたモデルとした.これらの伸展方向への変位量(mm)と椎間板,スクリュー周囲の椎体,instrumentへのかかるvon Mises 応力(MPa)を評価した.ALL損傷率が上昇するほど伸展方向への変位量が増加した.同様に椎間板,スクリュー周囲の椎体,instrumentへの応力が上昇した.またinstrumentへの応力は損傷高位と隣接する高位においても上昇した.ALL損傷の程度が増加するほど脊椎不安定性が生じ組織とinstrumentへの負荷が上昇した.ALL損傷は術後instrumentation failureのリスクとなり得る. |
Author | 土井田, 稔 山部, 大輔 千葉, 佑介 遠藤, 寛興 及川, 諒介 村上, 秀樹 楊, 寛隆 |
Author_xml | – sequence: 1 fullname: 村上, 秀樹 organization: 岩手医科大学医学部,整形外科学講座 – sequence: 1 fullname: 及川, 諒介 organization: 岩手医科大学医学部,整形外科学講座 – sequence: 1 fullname: 遠藤, 寛興 organization: 岩手医科大学医学部,整形外科学講座 – sequence: 1 fullname: 山部, 大輔 organization: 岩手医科大学医学部,整形外科学講座 – sequence: 1 fullname: 楊, 寛隆 organization: 岩手医科大学医学部,整形外科学講座 – sequence: 1 fullname: 千葉, 佑介 organization: 岩手医科大学医学部,整形外科学講座 – sequence: 1 fullname: 土井田, 稔 organization: 岩手医科大学医学部,整形外科学講座 |
BookMark | eNo9kM1Kw0AAhBepYK19Ad8hdX-T7Em0-AcFL3peNtmNTalVkoJ4TEHQSkWP_pSCiAhirSeLID5M2Gjfwhall5nDDMPHzINc46ChAVhEsISpw-BSeCSbOoyrYcmhJSyoMwPymBJqQZexHMhDiJFFsEvnQDGOQw8S7nKCoJ0Hy-a0m931zPVTdj8wtx-mf5Mmz2nSTpOrtHX-czLIHi7MWed7-Djqvpjha3bZMa33NOmbz7dR72sBzAayHuvivxfA7vraTnnTqmxvbJVXKlYNIVtaOqDUg8zFXAaOrZSnIKSEIKk0RwFkvu0ypcYt5UHOPNuzKVfcnzCO4SknBbD6t1uLm3JPi8Mo3JfRsZBRM_TrWkwvEA4VeCLUmYZ-VUaiJskvJKhxlQ |
ContentType | Journal Article |
Copyright | 2022 岩手医学会 |
Copyright_xml | – notice: 2022 岩手医学会 |
DOI | 10.24750/iwateishi.74.2_47 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2434-0855 |
EndPage | 59 |
ExternalDocumentID | article_iwateishi_74_2_74_47_article_char_ja |
ID | FETCH-LOGICAL-j116a-ef44b05829af76ddbd004331ade91f05c685ddef4db095b6b649d9c3106002493 |
ISSN | 0021-3284 |
IngestDate | Wed Sep 03 06:31:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | English Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j116a-ef44b05829af76ddbd004331ade91f05c685ddef4db095b6b649d9c3106002493 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/iwateishi/74/2/74_47/_article/-char/ja |
PageCount | 13 |
ParticipantIDs | jstage_primary_article_iwateishi_74_2_74_47_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2022/06/01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022/06/01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | 岩手医学雑誌 |
PublicationTitleAlternate | 岩手医誌 |
PublicationYear | 2022 |
Publisher | 岩手医学会 |
Publisher_xml | – name: 岩手医学会 |
References | Park P, Wang MY, Lafage V, et al.: Comparison of two minimally invasive surgery strategies to treat adult spinal deformity. J Neurosurg Spine 22, 374–380, 2015. Lee CH, Kim YE, Lee HJ, et al.: Biomechanical effects of hybrid stabilization on the risk of proximal adjacent-segment degeneration following lumbar spinal fusion using an interspinous device or a pedicle screw-based dynamic fixator. J Neurosurg Spine 27, 643–649, 2017. Ozgur BM, Aryan HE, Pimenta L, et al.: Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6, 435–443, 2006. Ottardi C, Galbusera F, Lucac A, et al.: Finite element analysis of the lumbar destabilization following pedicle subtraction osteotomy. Med Eng Phys 38, 506–509, 2016. Joseph JR, Smith BW, La Marca, et al.: Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus 39, E4, 2015. Murray G, Beckman J, Bach K, et al.: Complications and neurological deficits following minimally invasive anterior column release for adult spinal deformity: a retrospective study. Eur Spine J 24, S397–S404, 2015. Godzik J, Haglin JM, Alan N, et al.: Retrospective multicenter assessment of rod fracture after anterior column realignment in minimally invasive adult spinal deformity correction. World Neurosurg 130, e400–e405, 2019. Marchi L, Oliveira L, Coutinho E, et al.: The importance of the anterior longitudinal ligament in lumbar disc arthroplasty: 36-Month follow-up experience in extreme lateral total disc replacement. Int J Spine Surg 6, 18–23, 2012. Oliveira L, Marchi L, Coutinho E, et al.: A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976) 35, S331–S337, 2010. Rundell SA, Auerbach JD, Balderston RA, et al.: Total disc replacement positioning affects facet contact forces and vertebral body strains. Spine (Phila Pa 1976) 33, 2510 –2517, 2008. Fujibayashi S, Kawakami N, Asazuma T, et al.: Complications associated with lateral interbody fusion: nationwide survey of 2998 cases during the first 2 years of its use in Japan. Spine (Phila Pa 1976) 42, 1478–1484, 2017. Kepler CK, Sharma AK, Huang RC, et al.: Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine 16, 329–333, 2012. Auerbach JD, Lenke LG, Bridwell KH, et al.: Major complications and comparison between 3-column osteotomy techniques in 105 consecutive spinal deformity procedures. Spine (Phila Pa 1976) 37, 1198–1210, 2012. Lee CH, Kim YE, Lee HJ, et al.: Biomechanical effects of hybrid stabilization on the risk of proximal adjacent-segment degeneration following lumbar spinal fusion using an interspinous device or a pedicle screw–based dynamic fixator. J Neurosurg Spine 27, 643–649, 2017. Tatsuno R, Ebata S, Ohba T, et al.: The preoperative predictions and postoperative fusion rate at the disc level of anterior longitudinal ligament rupture after lateral interbody fusion. J Spine Res 8, 1640–1645, 2017. Wang H, Guo J, Wang S, et al.: Instrumentation failure after posterior vertebral column resection in adult spinal deformity. Spine (Phila Pa 1976) 42, 471–478, 2017. Bess S, Line B, Fu KM, et al.: The health impact of symptomatic adult spinal deformity: comparison of deformity types to United States population norms and chronic disease. Spine (Phila Pa 1976) 41, 224–233, 2016. Renner SM, Natarajan RN, Patwardhan AG, et al.: Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. J Biomech 40, 1326–1332, 2007. Malham GM, Parker RM, Goss B, et al.: Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. Eur Spine J 24, S339–S345, 2015. Smith JS, Klineberg E, Lafage V, et al.: Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine 25, 1–14, 2016. Hosseini P, Mundis GM Jr, Eastlack RK, et al.: Preliminary results of anterior lumbar interbody fusion, anterior column realignment for the treatment of sagittal malalignment. Neurosurg Focus 43, E6, 2017. White A and Panjabi M: Clinical biomechanics of the spine, 2nd ed, pp. 21-22, J.B. Lippincott Company, Philadelphia, 2001. Januszewski J, Beckman JM, Harris JE, et al.: Biomechanical study of rod stress after pedicle subtraction osteotomy versus anterior column reconstruction: a finite element study. Surg Neurol Int 8, 207, 2017. Castellvi AE, Nienke TW, Marulanda GA, et al.: Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. Clin Orthop Relat Res 472, 1784–1791, 2014. Sun X, Wang J, Liu X, et al.: Degeneration of injured intervertebral discs affected by anterior longitudinal ligament injury in rabbits. Int J Clin Exp Pathol 11, 595–603, 2018. Sugawara R, Takeshita K, Inomata Y, et al.: The Japanese Scoliosis Society Morbidity and Mortality survey in 2014: The complication trends of spinal deformity surgery from 2012 to 2014. Spine Surg Relat Res 3, 214–221, 2019. Vadapalli S, Sairyo K, Goel VK, et al.: Biomechanical rationale for using polyether-etherketone (PEEK) spacers for lumbar interbody fusion–a finite element study. Spine (Phila Pa 1976) 31, E992–E998, 2006. Mattucci SFE, Moulton JA, Chandrashekar N, et al.: Strain rate dependent properties of younger human cervical spine ligaments. J Mech BehavBiomech Mat 10, 216–226, 2012. Zhang ZJ, Li H, Fogel GR, et al.: Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Comput Biol Med 95, 167–174, 2018. Silvestre C, Mac-Thiong J-M, Hilmi R, et al.: Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6, 89–97, 2012. Cheung ZB, Chen DH, White SJW, et al.: Anterior column realignment in adult spinal deformity: a case report and review of the literature. World Neurosurg 123, e379–e386, 2019. Cloyd JM, Acosta FL Jr, Cloyd C, et al.: Effects of age on perioperative complications of extensive multilevel thoracolumbar spinal fusion surgery. J Neurosurg Spine 12, 402–408, 2010. Patwardhan AG, Havey RM, Meade KP, et al.: A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24, 1003–1009, 1999. Denozière G and Ku DN: Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. J Biomech 39, 766–775, 2006. Woods KRM, Billys JB and Hynes RA: Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J 17, 545–553, 2017. Nakashima H, Kanemura T, Satake K, et al.: Factors affecting postoperative sagittal alignment after lateral lumbar interbody fusion in adult spinal deformity: posterior osteotomy, anterior longitudinal ligament rupture, and endplate injury. Asian Spine J 13, 738–745, 2019. Galbusera F, Bellini C, Anasetti F, et al.: Rigid and flexible spinal stabilization devices: a biomechanical comparison. Med Eng Phys 33, 490–496, 2011. Saigal R, Mundis GM Jr, Eastlack R, et al.: Anterior column realignment (ACR) in adult spinal deformity correction: technique and review of the literature. Spine (Phila Pa 1976) 41, S66–S73, 2016. Nishida N, Ohgi J, Jiang F, et al.: Finite element method analysis of compression fractures on whole-spine models including the rib cage. Comput Math Methods Med 5, 8348631, 2019. Kim C, Harris JA, Muzumdar A, et al.: The effect of anterior longitudinal ligament resection on lordosis correction during minimally invasive lateral lumbar interbody fusion: Biomechanical and radiographic feasibility of an integrated spacer/plate interbody reconstruction device. Clin Biomech (Bristol, Avon) 43, 102–108, 2017. Ohtori S, Mannoji C, Orita S, et al.: Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spinal kyphoscoliosis. Asian Spine J 9, 565–572, 2015. Fan W and Guo L-X: A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: Finite element static and vibration analyses. Int J Numer Method Biomed Eng 35, e3162, 2019. Glassman SD, Bridwell K, Dimar JR, et al.: The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30, 2024–2029, 2005. Fujibayashi S, Hynes RA, Otsuki B, et al.: Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976) 40, E175–E182, 2015. |
References_xml | – reference: Fan W and Guo L-X: A comparison of the influence of three different lumbar interbody fusion approaches on stress in the pedicle screw fixation system: Finite element static and vibration analyses. Int J Numer Method Biomed Eng 35, e3162, 2019. – reference: Castellvi AE, Nienke TW, Marulanda GA, et al.: Indirect decompression of lumbar stenosis with transpsoas interbody cages and percutaneous posterior instrumentation. Clin Orthop Relat Res 472, 1784–1791, 2014. – reference: Marchi L, Oliveira L, Coutinho E, et al.: The importance of the anterior longitudinal ligament in lumbar disc arthroplasty: 36-Month follow-up experience in extreme lateral total disc replacement. Int J Spine Surg 6, 18–23, 2012. – reference: Kim C, Harris JA, Muzumdar A, et al.: The effect of anterior longitudinal ligament resection on lordosis correction during minimally invasive lateral lumbar interbody fusion: Biomechanical and radiographic feasibility of an integrated spacer/plate interbody reconstruction device. Clin Biomech (Bristol, Avon) 43, 102–108, 2017. – reference: Vadapalli S, Sairyo K, Goel VK, et al.: Biomechanical rationale for using polyether-etherketone (PEEK) spacers for lumbar interbody fusion–a finite element study. Spine (Phila Pa 1976) 31, E992–E998, 2006. – reference: Zhang ZJ, Li H, Fogel GR, et al.: Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages. Comput Biol Med 95, 167–174, 2018. – reference: Mattucci SFE, Moulton JA, Chandrashekar N, et al.: Strain rate dependent properties of younger human cervical spine ligaments. J Mech BehavBiomech Mat 10, 216–226, 2012. – reference: Murray G, Beckman J, Bach K, et al.: Complications and neurological deficits following minimally invasive anterior column release for adult spinal deformity: a retrospective study. Eur Spine J 24, S397–S404, 2015. – reference: Patwardhan AG, Havey RM, Meade KP, et al.: A follower load increases the load-carrying capacity of the lumbar spine in compression. Spine (Phila Pa 1976) 24, 1003–1009, 1999. – reference: Fujibayashi S, Hynes RA, Otsuki B, et al.: Effect of indirect neural decompression through oblique lateral interbody fusion for degenerative lumbar disease. Spine (Phila Pa 1976) 40, E175–E182, 2015. – reference: Cloyd JM, Acosta FL Jr, Cloyd C, et al.: Effects of age on perioperative complications of extensive multilevel thoracolumbar spinal fusion surgery. J Neurosurg Spine 12, 402–408, 2010. – reference: Hosseini P, Mundis GM Jr, Eastlack RK, et al.: Preliminary results of anterior lumbar interbody fusion, anterior column realignment for the treatment of sagittal malalignment. Neurosurg Focus 43, E6, 2017. – reference: Sugawara R, Takeshita K, Inomata Y, et al.: The Japanese Scoliosis Society Morbidity and Mortality survey in 2014: The complication trends of spinal deformity surgery from 2012 to 2014. Spine Surg Relat Res 3, 214–221, 2019. – reference: Nakashima H, Kanemura T, Satake K, et al.: Factors affecting postoperative sagittal alignment after lateral lumbar interbody fusion in adult spinal deformity: posterior osteotomy, anterior longitudinal ligament rupture, and endplate injury. Asian Spine J 13, 738–745, 2019. – reference: Nishida N, Ohgi J, Jiang F, et al.: Finite element method analysis of compression fractures on whole-spine models including the rib cage. Comput Math Methods Med 5, 8348631, 2019. – reference: Januszewski J, Beckman JM, Harris JE, et al.: Biomechanical study of rod stress after pedicle subtraction osteotomy versus anterior column reconstruction: a finite element study. Surg Neurol Int 8, 207, 2017. – reference: Smith JS, Klineberg E, Lafage V, et al.: Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine 25, 1–14, 2016. – reference: Ozgur BM, Aryan HE, Pimenta L, et al.: Extreme lateral interbody fusion (XLIF): a novel surgical technique for anterior lumbar interbody fusion. Spine J 6, 435–443, 2006. – reference: Rundell SA, Auerbach JD, Balderston RA, et al.: Total disc replacement positioning affects facet contact forces and vertebral body strains. Spine (Phila Pa 1976) 33, 2510 –2517, 2008. – reference: Wang H, Guo J, Wang S, et al.: Instrumentation failure after posterior vertebral column resection in adult spinal deformity. Spine (Phila Pa 1976) 42, 471–478, 2017. – reference: Cheung ZB, Chen DH, White SJW, et al.: Anterior column realignment in adult spinal deformity: a case report and review of the literature. World Neurosurg 123, e379–e386, 2019. – reference: Godzik J, Haglin JM, Alan N, et al.: Retrospective multicenter assessment of rod fracture after anterior column realignment in minimally invasive adult spinal deformity correction. World Neurosurg 130, e400–e405, 2019. – reference: Renner SM, Natarajan RN, Patwardhan AG, et al.: Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. J Biomech 40, 1326–1332, 2007. – reference: Ohtori S, Mannoji C, Orita S, et al.: Mini-open anterior retroperitoneal lumbar interbody fusion: oblique lateral interbody fusion for degenerated lumbar spinal kyphoscoliosis. Asian Spine J 9, 565–572, 2015. – reference: Galbusera F, Bellini C, Anasetti F, et al.: Rigid and flexible spinal stabilization devices: a biomechanical comparison. Med Eng Phys 33, 490–496, 2011. – reference: Fujibayashi S, Kawakami N, Asazuma T, et al.: Complications associated with lateral interbody fusion: nationwide survey of 2998 cases during the first 2 years of its use in Japan. Spine (Phila Pa 1976) 42, 1478–1484, 2017. – reference: Bess S, Line B, Fu KM, et al.: The health impact of symptomatic adult spinal deformity: comparison of deformity types to United States population norms and chronic disease. Spine (Phila Pa 1976) 41, 224–233, 2016. – reference: Oliveira L, Marchi L, Coutinho E, et al.: A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine (Phila Pa 1976) 35, S331–S337, 2010. – reference: Kepler CK, Sharma AK, Huang RC, et al.: Indirect foraminal decompression after lateral transpsoas interbody fusion. J Neurosurg Spine 16, 329–333, 2012. – reference: White A and Panjabi M: Clinical biomechanics of the spine, 2nd ed, pp. 21-22, J.B. Lippincott Company, Philadelphia, 2001. – reference: Auerbach JD, Lenke LG, Bridwell KH, et al.: Major complications and comparison between 3-column osteotomy techniques in 105 consecutive spinal deformity procedures. Spine (Phila Pa 1976) 37, 1198–1210, 2012. – reference: Denozière G and Ku DN: Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. J Biomech 39, 766–775, 2006. – reference: Woods KRM, Billys JB and Hynes RA: Technical description of oblique lateral interbody fusion at L1-L5 (OLIF25) and at L5-S1 (OLIF51) and evaluation of complication and fusion rates. Spine J 17, 545–553, 2017. – reference: Ottardi C, Galbusera F, Lucac A, et al.: Finite element analysis of the lumbar destabilization following pedicle subtraction osteotomy. Med Eng Phys 38, 506–509, 2016. – reference: Joseph JR, Smith BW, La Marca, et al.: Comparison of complication rates of minimally invasive transforaminal lumbar interbody fusion and lateral lumbar interbody fusion: a systematic review of the literature. Neurosurg Focus 39, E4, 2015. – reference: Tatsuno R, Ebata S, Ohba T, et al.: The preoperative predictions and postoperative fusion rate at the disc level of anterior longitudinal ligament rupture after lateral interbody fusion. J Spine Res 8, 1640–1645, 2017. – reference: Glassman SD, Bridwell K, Dimar JR, et al.: The impact of positive sagittal balance in adult spinal deformity. Spine (Phila Pa 1976) 30, 2024–2029, 2005. – reference: Saigal R, Mundis GM Jr, Eastlack R, et al.: Anterior column realignment (ACR) in adult spinal deformity correction: technique and review of the literature. Spine (Phila Pa 1976) 41, S66–S73, 2016. – reference: Malham GM, Parker RM, Goss B, et al.: Clinical results and limitations of indirect decompression in spinal stenosis with laterally implanted interbody cages: results from a prospective cohort study. Eur Spine J 24, S339–S345, 2015. – reference: Sun X, Wang J, Liu X, et al.: Degeneration of injured intervertebral discs affected by anterior longitudinal ligament injury in rabbits. Int J Clin Exp Pathol 11, 595–603, 2018. – reference: Silvestre C, Mac-Thiong J-M, Hilmi R, et al.: Complications and morbidities of mini-open anterior retroperitoneal lumbar interbody fusion: oblique lumbar interbody fusion in 179 patients. Asian Spine J 6, 89–97, 2012. – reference: Lee CH, Kim YE, Lee HJ, et al.: Biomechanical effects of hybrid stabilization on the risk of proximal adjacent-segment degeneration following lumbar spinal fusion using an interspinous device or a pedicle screw-based dynamic fixator. J Neurosurg Spine 27, 643–649, 2017. – reference: Lee CH, Kim YE, Lee HJ, et al.: Biomechanical effects of hybrid stabilization on the risk of proximal adjacent-segment degeneration following lumbar spinal fusion using an interspinous device or a pedicle screw–based dynamic fixator. J Neurosurg Spine 27, 643–649, 2017. – reference: Park P, Wang MY, Lafage V, et al.: Comparison of two minimally invasive surgery strategies to treat adult spinal deformity. J Neurosurg Spine 22, 374–380, 2015. |
SSID | ssib039893106 ssib044742471 ssib051393357 ssib000954287 ssib058493047 |
Score | 2.2795572 |
Snippet | 成人脊柱変形に対して側方進入腰椎椎体間固定術を併用した手術による術中合併症の一つとして腰椎前縦靭帯(anterior longitudinal ligament;ALL)損傷があり,近年,これに伴う術後instrumentation... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 47 |
Subtitle | 3次元有限要素法による研究 |
Title | 初期器械固定における腰椎前縦靭帯損傷の影響 |
URI | https://www.jstage.jst.go.jp/article/iwateishi/74/2/74_47/_article/-char/ja |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 岩手医学雑誌, 2022/06/01, Vol.74(2), pp.47-59 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RANNR68SKKit_04ByzJpNJZgYPkulmKUI9tdBbSDYJ2EMVaSl4ELYg-EFFj36UgogIYq0niyD-mCWr_Re-95JsU_XQKizD7Js373PCvJm8mVjWFUdkSZD4hS1EJm2RJ6md5L5jKy37MP35mS5wH3L2ZjAzL24s-AsTRzZbWUsry2mnf--v50r-xasAA7_iKdlDeHZMFABQB_9CCR6G8kA-ZpHPlGK6y6KA6WmmewjRmoUKISFnxiGIYSbEShgxDRUP4kcWmrqiGoh2qcKZgibFlE_dgQ7EmxHx0kwBL8mMYmHAIo2swy42IaRHYjiE4yMdIxte1N10mXGpV4-ZffmE1MpZqJECcjFEYZoZqgCLmp0hIYFXCK3NYCG2XWoRKAgoBAMH5QwlZnKgCooZvYcPtHukt48yQl_CV2gTzYmKARn28DUp4SCKlmgPwvdRZV3ZCn9t-qBopavykHmDL1AkwDfgLNHecYHF-jgzjJ6Rg5lEEKWwPfdw1_Z49UG8Tk4wLjxhY6Zgez6qvlpUP3e8NblUV5PWYUp1j_rvEyAXEAHCsL21CsLjJmZHig6Pm577Lhavh208xo2liDkWQsZNI579ixdhAXKUS0l5ELP3o3Z8jkvu5r-nIfptvbYXQgqQaDyB-LDc8Fr3H0Lwq_G1b5WGVVmnOthGelz9QwsIExdh0dQkXFIMOHfCOl4v3qbCSuqT1kS-dMq6Xj7cGL3eLF-8H73ZLl99LbdeDgcfhoPHw8Hz4dqTnw-2R2-flo_Wf-y82934WO58Gj1bL9e-DAdb5bfPu5vfT1vzvWhuesauP0tiL7pukNh5IQTKznVSyCDL0gxfp3tukuXaLRy_HygfgoZCZCnYJw3SQOhM99EwdEGnd8aaXLq9lJ-1pjwn0xAQJlJnmUiKROsg5W4_8VWOexfynHWt0je-U909Ex_Gaef_q_cF69je4L9oTS7fXckvQQC-nF6mQfALztG2gg |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%88%9D%E6%9C%9F%E5%99%A8%E6%A2%B0%E5%9B%BA%E5%AE%9A%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E8%85%B0%E6%A4%8E%E5%89%8D%E7%B8%A6%E9%9D%AD%E5%B8%AF%E6%90%8D%E5%82%B7%E3%81%AE%E5%BD%B1%E9%9F%BF&rft.jtitle=%E5%B2%A9%E6%89%8B%E5%8C%BB%E5%AD%A6%E9%9B%91%E8%AA%8C&rft.au=%E6%9D%91%E4%B8%8A%2C+%E7%A7%80%E6%A8%B9&rft.au=%E5%8F%8A%E5%B7%9D%2C+%E8%AB%92%E4%BB%8B&rft.au=%E9%81%A0%E8%97%A4%2C+%E5%AF%9B%E8%88%88&rft.au=%E5%B1%B1%E9%83%A8%2C+%E5%A4%A7%E8%BC%94&rft.date=2022-06-01&rft.pub=%E5%B2%A9%E6%89%8B%E5%8C%BB%E5%AD%A6%E4%BC%9A&rft.issn=0021-3284&rft.eissn=2434-0855&rft.volume=74&rft.issue=2&rft.spage=47&rft.epage=59&rft_id=info:doi/10.24750%2Fiwateishi.74.2_47&rft.externalDocID=article_iwateishi_74_2_74_47_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-3284&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-3284&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-3284&client=summon |