Consistency in Monte Carlo Uncertainty AnalysesOfficial contribution of the National Institute of Standards and Technology; not subject to copyright in the United States
The Monte Carlo method is an established tool that is often used to evaluate the uncertainty of measurements. For computationally challenging problems, Monte Carlo uncertainty analyses are typically distributed across multiple processes on a multi-node cluster or supercomputer. Additionally, results...
Saved in:
Published in | Metrologia Vol. 57; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Monte Carlo method is an established tool that is often used to evaluate the uncertainty of measurements. For computationally challenging problems, Monte Carlo uncertainty analyses are typically distributed across multiple processes on a multi-node cluster or supercomputer. Additionally, results from previous uncertainty analyses are often used in further analyses in a sequential manner. To accurately capture the uncertainty of the output quantity of interest, Monte Carlo sample distributions must be treated consistently, using reproducible replicates, throughout the entire analysis. We highlight the need for and importance of consistent Monte Carlo methods in distributed and sequential uncertainty analyses, recommend an implementation to achieve the needed consistency in these complicated analyses, and discuss methods to evaluate the accuracy of implementations. |
---|---|
AbstractList | The Monte Carlo method is an established tool that is often used to evaluate the uncertainty of measurements. For computationally challenging problems, Monte Carlo uncertainty analyses are typically distributed across multiple processes on a multi-node cluster or supercomputer. Additionally, results from previous uncertainty analyses are often used in further analyses in a sequential manner. To accurately capture the uncertainty of the output quantity of interest, Monte Carlo sample distributions must be treated consistently, using reproducible replicates, throughout the entire analysis. We highlight the need for and importance of consistent Monte Carlo methods in distributed and sequential uncertainty analyses, recommend an implementation to achieve the needed consistency in these complicated analyses, and discuss methods to evaluate the accuracy of implementations. |
Author | Williams, Dylan F Jamroz, Benjamin F |
Author_xml | – sequence: 1 givenname: Benjamin F orcidid: 0000-0002-5498-1137 surname: Jamroz fullname: Jamroz, Benjamin F email: benjamin.jamroz@nist.gov organization: National Institute of Standards and Technology , 325 Broadway, Boulder CO, 80303 United States of America – sequence: 2 givenname: Dylan F surname: Williams fullname: Williams, Dylan F organization: National Institute of Standards and Technology , 325 Broadway, Boulder CO, 80303 United States of America |
BookMark | eNptkcFu1DAQQC1UJLald46WOHAhrSeJ7VicqhUtlQo9dHu2HNvpehXsJZ4c8kn8JY4W0QunkWfePI1nzslZTNET8gHYFbCuuwbRQSW55NemN9yYN2TzL3VGNozVooJGte_Iec4HxkDWXG7I722KOWT00S40RPo9RfR0a6Yx0edo_YQmRFzoTTTjkn1-HIZggxmpLeAU-hlDijQNFPee_jDrqxTvY8aAczGVyhOa6MzkMi2R7rzdxzSml-ULjQlpnvuDt0gxFeVxmcLLHtdBVt9zDOjdKkCf35O3gxmzv_wbL8ju9utu-616eLy73948VEFJqKB3TrW9AsmkbOtWWKmE7zrjVF1D57qWQWN5DR5c39dKgRmYACtazy00Q3NBPp60xyn9mn1GfUjzVD6Vdd2WPlCCQ6E-n6iQjq8AML3eQq-L1-vi9ekWBf_0H_ynR82lFpoJzlinj25o_gAOWY9F |
CODEN | MTRGAU |
ContentType | Journal Article |
Copyright | Not subject to copyright in the USA. Contribution of NIST Copyright IOP Publishing Dec 2020 |
Copyright_xml | – notice: Not subject to copyright in the USA. Contribution of NIST – notice: Copyright IOP Publishing Dec 2020 |
DBID | 7U5 8FD L7M |
DOI | 10.1088/1681-7575/aba5aa |
DatabaseName | Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Consistency in Monte Carlo Uncertainty AnalysesOfficial contribution of the National Institute of Standards and Technology; not subject to copyright in the United States |
EISSN | 1681-7575 |
ExternalDocumentID | metaba5aa |
GroupedDBID | -~X 123 1JI 4.4 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ACIWK AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NS0 PJBAE PQQKQ R4D RIN RKQ RNS RO9 ROL RPA SY9 W28 XPP ~02 7U5 8FD ADEQX AEINN L7M |
ID | FETCH-LOGICAL-i971-1bdd94b9170774246c796e88ad92218d84013c521e1dbb2991af061c64e5c13f3 |
IEDL.DBID | IOP |
ISSN | 0026-1394 |
IngestDate | Wed Aug 13 04:21:41 EDT 2025 Wed Aug 21 03:38:34 EDT 2024 Thu Jan 07 14:56:17 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i971-1bdd94b9170774246c796e88ad92218d84013c521e1dbb2991af061c64e5c13f3 |
Notes | MET-101678.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5498-1137 |
PQID | 2452119651 |
PQPubID | 49011 |
PageCount | 10 |
ParticipantIDs | iop_journals_10_1088_1681_7575_aba5aa proquest_journals_2452119651 |
PublicationCentury | 2000 |
PublicationDate | 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201201 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | Metrologia |
PublicationTitleAbbrev | MET |
PublicationTitleAlternate | Metrologia |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
SSID | ssj0017257 |
Score | 2.2583225 |
Snippet | The Monte Carlo method is an established tool that is often used to evaluate the uncertainty of measurements. For computationally challenging problems, Monte... |
SourceID | proquest iop |
SourceType | Aggregation Database Enrichment Source Publisher |
SubjectTerms | Consistency distributed computing Evaluation Monte Carlo simulation the monte carlo method Uncertainty analysis |
Title | Consistency in Monte Carlo Uncertainty AnalysesOfficial contribution of the National Institute of Standards and Technology; not subject to copyright in the United States |
URI | https://iopscience.iop.org/article/10.1088/1681-7575/aba5aa https://www.proquest.com/docview/2452119651 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA6iLOyLl73guKOcB33sOGnTNMUnGRRd8AKr4IMQcivIju1gOw-z_2j_5Z6kcUTdh2WfWughCae5fOeS7xCy7zQvDHNVYvJcJMwoXHOlsLjcc8V0WXFF_eXki0t-dsu-3-V3K-RoeRemmcWtf4SvPVFwr8KYECcOKRc0KRBmHCqtcoXgaC0TnPvyBedX18sQQhFpPtHISBDmsBij_FsLeK5gZ-9243DEnG6Q--fB9ZklP0fzTo_Mrze8jf85-k2yHqEnHPeiW2TF1Z_Ih5ACatrP5Heo3dl6DL2AhxouPG8VTNTTtIFb7CukDnQL6GlMXHsVyScgZLvHslnQVICQEiLd9hSWyQj-y4_ot2gBn_Di1T-CuumgnWvvFIKuwSZni-A28APx7fXQGHpo_IXcnJ7cTM6SWMgheSgLmlBtbYk_nhZjBJsp46YouRNC2TJFhGGFt_EM4ghHrdZ4PlJVIcwwnLnc0KzKvpLVuqndNgHLU8188JZywyprdFYKI9CYNoqzcZYOyAEqXsZ12MoQYhdCeq1Lr3XZa31A4JXco-tkXkguPWIdCzmz1YAMn6fDi5yPU1NPwkh3_rGnb-Rj6k30kAEzJKvd09ztIo7p9F6Yr38AT_Lv-g |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6CIlAv7IgpBd4BjpkZJ47jiBMqjFqgi0Qr9Wa8RaooyajJHIZ_xL_k2XFbsRyQOCVSLC8vXr63-HsAr7wRleW-yWxZyoxbTWuulo6We6m5qRuhWbicvH8gdk_4h9PyNOU5jXdhumXa-qf0OhIFjyJMAXFyxoRkWUUwY6aNLrWeLV1zE26VhSgCef7e4dGVG6FKVJ-kaGQEdXjyU_6tFjpbqME_duR4zCzuwZfLDo7RJV-nq8FM7fffuBv_YwT34W6CoPh2LP4Abvj2IdyOoaC2fwQ_Yg7PPmDpNZ61uB_4q3BHX5x3eELtxRCCYY0jnYnvDxMJBcao95Q-C7sGCVpiot0-x6ughPDlc7Jf9EhPvLbuv8G2G7BfmWAcwqGjKpfraD4IHQn1jRAZR4j8GI4X7493drOU0CE7qyuWMeNcTROAVXMCnTkXtqqFl1K7Oiek4WTQ9SzhCc-cMXROMt0Q3LCC-9KyoimewEbbtf4poBO54cGJy4TljbOmqKWVpFRbLfi8yCfwmoSv0nrsVXS1S6mC5FWQvBolPwH8pdw3P6iyUkIF5DqXin7MBLYvp8R1ueCvZoGMkW39Y0sv4c7Ru4X6tHfw8Rls5kFrj0Ex27AxXKz8c4I2g3kRp-9PZIj1Xg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistency+in+Monte+Carlo+Uncertainty+AnalysesOfficial+contribution+of+the+National+Institute+of+Standards+and+Technology%3B+not+subject+to+copyright+in+the+United+States&rft.jtitle=Metrologia&rft.au=Jamroz%2C+Benjamin+F&rft.au=Williams%2C+Dylan+F&rft.date=2020-12-01&rft.pub=IOP+Publishing&rft.issn=0026-1394&rft.eissn=1681-7575&rft.volume=57&rft.issue=6&rft_id=info:doi/10.1088%2F1681-7575%2Faba5aa&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1394&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1394&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1394&client=summon |