Consistency in Monte Carlo Uncertainty AnalysesOfficial contribution of the National Institute of Standards and Technology; not subject to copyright in the United States

The Monte Carlo method is an established tool that is often used to evaluate the uncertainty of measurements. For computationally challenging problems, Monte Carlo uncertainty analyses are typically distributed across multiple processes on a multi-node cluster or supercomputer. Additionally, results...

Full description

Saved in:
Bibliographic Details
Published inMetrologia Vol. 57; no. 6
Main Authors Jamroz, Benjamin F, Williams, Dylan F
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.12.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Monte Carlo method is an established tool that is often used to evaluate the uncertainty of measurements. For computationally challenging problems, Monte Carlo uncertainty analyses are typically distributed across multiple processes on a multi-node cluster or supercomputer. Additionally, results from previous uncertainty analyses are often used in further analyses in a sequential manner. To accurately capture the uncertainty of the output quantity of interest, Monte Carlo sample distributions must be treated consistently, using reproducible replicates, throughout the entire analysis. We highlight the need for and importance of consistent Monte Carlo methods in distributed and sequential uncertainty analyses, recommend an implementation to achieve the needed consistency in these complicated analyses, and discuss methods to evaluate the accuracy of implementations.
AbstractList The Monte Carlo method is an established tool that is often used to evaluate the uncertainty of measurements. For computationally challenging problems, Monte Carlo uncertainty analyses are typically distributed across multiple processes on a multi-node cluster or supercomputer. Additionally, results from previous uncertainty analyses are often used in further analyses in a sequential manner. To accurately capture the uncertainty of the output quantity of interest, Monte Carlo sample distributions must be treated consistently, using reproducible replicates, throughout the entire analysis. We highlight the need for and importance of consistent Monte Carlo methods in distributed and sequential uncertainty analyses, recommend an implementation to achieve the needed consistency in these complicated analyses, and discuss methods to evaluate the accuracy of implementations.
Author Williams, Dylan F
Jamroz, Benjamin F
Author_xml – sequence: 1
  givenname: Benjamin F
  orcidid: 0000-0002-5498-1137
  surname: Jamroz
  fullname: Jamroz, Benjamin F
  email: benjamin.jamroz@nist.gov
  organization: National Institute of Standards and Technology , 325 Broadway, Boulder CO, 80303 United States of America
– sequence: 2
  givenname: Dylan F
  surname: Williams
  fullname: Williams, Dylan F
  organization: National Institute of Standards and Technology , 325 Broadway, Boulder CO, 80303 United States of America
BookMark eNptkcFu1DAQQC1UJLald46WOHAhrSeJ7VicqhUtlQo9dHu2HNvpehXsJZ4c8kn8JY4W0QunkWfePI1nzslZTNET8gHYFbCuuwbRQSW55NemN9yYN2TzL3VGNozVooJGte_Iec4HxkDWXG7I722KOWT00S40RPo9RfR0a6Yx0edo_YQmRFzoTTTjkn1-HIZggxmpLeAU-hlDijQNFPee_jDrqxTvY8aAczGVyhOa6MzkMi2R7rzdxzSml-ULjQlpnvuDt0gxFeVxmcLLHtdBVt9zDOjdKkCf35O3gxmzv_wbL8ju9utu-616eLy73948VEFJqKB3TrW9AsmkbOtWWKmE7zrjVF1D57qWQWN5DR5c39dKgRmYACtazy00Q3NBPp60xyn9mn1GfUjzVD6Vdd2WPlCCQ6E-n6iQjq8AML3eQq-L1-vi9ekWBf_0H_ynR82lFpoJzlinj25o_gAOWY9F
CODEN MTRGAU
ContentType Journal Article
Copyright Not subject to copyright in the USA. Contribution of NIST
Copyright IOP Publishing Dec 2020
Copyright_xml – notice: Not subject to copyright in the USA. Contribution of NIST
– notice: Copyright IOP Publishing Dec 2020
DBID 7U5
8FD
L7M
DOI 10.1088/1681-7575/aba5aa
DatabaseName Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Consistency in Monte Carlo Uncertainty AnalysesOfficial contribution of the National Institute of Standards and Technology; not subject to copyright in the United States
EISSN 1681-7575
ExternalDocumentID metaba5aa
GroupedDBID -~X
123
1JI
4.4
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ACIWK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NS0
PJBAE
PQQKQ
R4D
RIN
RKQ
RNS
RO9
ROL
RPA
SY9
W28
XPP
~02
7U5
8FD
ADEQX
AEINN
L7M
ID FETCH-LOGICAL-i971-1bdd94b9170774246c796e88ad92218d84013c521e1dbb2991af061c64e5c13f3
IEDL.DBID IOP
ISSN 0026-1394
IngestDate Wed Aug 13 04:21:41 EDT 2025
Wed Aug 21 03:38:34 EDT 2024
Thu Jan 07 14:56:17 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i971-1bdd94b9170774246c796e88ad92218d84013c521e1dbb2991af061c64e5c13f3
Notes MET-101678.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5498-1137
PQID 2452119651
PQPubID 49011
PageCount 10
ParticipantIDs iop_journals_10_1088_1681_7575_aba5aa
proquest_journals_2452119651
PublicationCentury 2000
PublicationDate 20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201201
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Metrologia
PublicationTitleAbbrev MET
PublicationTitleAlternate Metrologia
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
SSID ssj0017257
Score 2.2583225
Snippet The Monte Carlo method is an established tool that is often used to evaluate the uncertainty of measurements. For computationally challenging problems, Monte...
SourceID proquest
iop
SourceType Aggregation Database
Enrichment Source
Publisher
SubjectTerms Consistency
distributed computing
Evaluation
Monte Carlo simulation
the monte carlo method
Uncertainty analysis
Title Consistency in Monte Carlo Uncertainty AnalysesOfficial contribution of the National Institute of Standards and Technology; not subject to copyright in the United States
URI https://iopscience.iop.org/article/10.1088/1681-7575/aba5aa
https://www.proquest.com/docview/2452119651
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA6iLOyLl73guKOcB33sOGnTNMUnGRRd8AKr4IMQcivIju1gOw-z_2j_5Z6kcUTdh2WfWughCae5fOeS7xCy7zQvDHNVYvJcJMwoXHOlsLjcc8V0WXFF_eXki0t-dsu-3-V3K-RoeRemmcWtf4SvPVFwr8KYECcOKRc0KRBmHCqtcoXgaC0TnPvyBedX18sQQhFpPtHISBDmsBij_FsLeK5gZ-9243DEnG6Q--fB9ZklP0fzTo_Mrze8jf85-k2yHqEnHPeiW2TF1Z_Ih5ACatrP5Heo3dl6DL2AhxouPG8VTNTTtIFb7CukDnQL6GlMXHsVyScgZLvHslnQVICQEiLd9hSWyQj-y4_ot2gBn_Di1T-CuumgnWvvFIKuwSZni-A28APx7fXQGHpo_IXcnJ7cTM6SWMgheSgLmlBtbYk_nhZjBJsp46YouRNC2TJFhGGFt_EM4ghHrdZ4PlJVIcwwnLnc0KzKvpLVuqndNgHLU8188JZywyprdFYKI9CYNoqzcZYOyAEqXsZ12MoQYhdCeq1Lr3XZa31A4JXco-tkXkguPWIdCzmz1YAMn6fDi5yPU1NPwkh3_rGnb-Rj6k30kAEzJKvd09ztIo7p9F6Yr38AT_Lv-g
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6CIlAv7IgpBd4BjpkZJ47jiBMqjFqgi0Qr9Wa8RaooyajJHIZ_xL_k2XFbsRyQOCVSLC8vXr63-HsAr7wRleW-yWxZyoxbTWuulo6We6m5qRuhWbicvH8gdk_4h9PyNOU5jXdhumXa-qf0OhIFjyJMAXFyxoRkWUUwY6aNLrWeLV1zE26VhSgCef7e4dGVG6FKVJ-kaGQEdXjyU_6tFjpbqME_duR4zCzuwZfLDo7RJV-nq8FM7fffuBv_YwT34W6CoPh2LP4Abvj2IdyOoaC2fwQ_Yg7PPmDpNZ61uB_4q3BHX5x3eELtxRCCYY0jnYnvDxMJBcao95Q-C7sGCVpiot0-x6ughPDlc7Jf9EhPvLbuv8G2G7BfmWAcwqGjKpfraD4IHQn1jRAZR4j8GI4X7493drOU0CE7qyuWMeNcTROAVXMCnTkXtqqFl1K7Oiek4WTQ9SzhCc-cMXROMt0Q3LCC-9KyoimewEbbtf4poBO54cGJy4TljbOmqKWVpFRbLfi8yCfwmoSv0nrsVXS1S6mC5FWQvBolPwH8pdw3P6iyUkIF5DqXin7MBLYvp8R1ueCvZoGMkW39Y0sv4c7Ru4X6tHfw8Rls5kFrj0Ex27AxXKz8c4I2g3kRp-9PZIj1Xg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Consistency+in+Monte+Carlo+Uncertainty+AnalysesOfficial+contribution+of+the+National+Institute+of+Standards+and+Technology%3B+not+subject+to+copyright+in+the+United+States&rft.jtitle=Metrologia&rft.au=Jamroz%2C+Benjamin+F&rft.au=Williams%2C+Dylan+F&rft.date=2020-12-01&rft.pub=IOP+Publishing&rft.issn=0026-1394&rft.eissn=1681-7575&rft.volume=57&rft.issue=6&rft_id=info:doi/10.1088%2F1681-7575%2Faba5aa&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-1394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-1394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-1394&client=summon