A Real-Time Multi-Person Spatio-Temporal Behavior Detection Method in Nighttime Scenes Based on Multi-Model Combination
The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared vide...
Saved in:
Published in | Chinese Control and Decision Conference pp. 2430 - 2434 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared videos with clear and distinct human features. However, these methods are unsuitable for near-infrared videos that are widely used in monitoring field. Because near-infrared videos have a poor imaging quality and is subject to some interferences, leading to the bad application of tracking and analyzing the online near-infrared video in real-time. Therefore, it is of significant practical value to research methods for the human body's spatio-temporal behavior detection in nearinfrared surveillance videos. Based on a self-build dataset of near-infrared videos for behavior detection, the paper proposes a spatio-temporal behavior detection method for near-infrared surveillance videos using a combination of the YOLOv8n, DeepSort, and SlowFast models. This method aims to achieve multi-person behavior detection in the night scene. The experiments indicate that on the self-build near-infrared surveillance video dataset, the YOLOv8 algorithm model for pedestrian detection at night has a precision of 98.3 %, a recall of 98.2 %, and a mAP@ 0.50 of 99.20 %. The SlowFast algorithm model for near-infrared behavior classification has a mAP@ 0.50 of 80.58%. |
---|---|
AbstractList | The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared videos with clear and distinct human features. However, these methods are unsuitable for near-infrared videos that are widely used in monitoring field. Because near-infrared videos have a poor imaging quality and is subject to some interferences, leading to the bad application of tracking and analyzing the online near-infrared video in real-time. Therefore, it is of significant practical value to research methods for the human body's spatio-temporal behavior detection in nearinfrared surveillance videos. Based on a self-build dataset of near-infrared videos for behavior detection, the paper proposes a spatio-temporal behavior detection method for near-infrared surveillance videos using a combination of the YOLOv8n, DeepSort, and SlowFast models. This method aims to achieve multi-person behavior detection in the night scene. The experiments indicate that on the self-build near-infrared surveillance video dataset, the YOLOv8 algorithm model for pedestrian detection at night has a precision of 98.3 %, a recall of 98.2 %, and a mAP@ 0.50 of 99.20 %. The SlowFast algorithm model for near-infrared behavior classification has a mAP@ 0.50 of 80.58%. |
Author | Zhou, Jiayi Wang, Xiaogang Wang, Min Zhan, Binghan Yan, Jiacai |
Author_xml | – sequence: 1 givenname: Jiayi surname: Zhou fullname: Zhou, Jiayi email: zhoujiayi_ls@163.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000 – sequence: 2 givenname: Xiaogang surname: Wang fullname: Wang, Xiaogang email: wxg_zf@163.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000 – sequence: 3 givenname: Binghan surname: Zhan fullname: Zhan, Binghan email: zbh_kkkzm@163.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000 – sequence: 4 givenname: Min surname: Wang fullname: Wang, Min email: wangmin_mywm@163.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000 – sequence: 5 givenname: Jiacai surname: Yan fullname: Yan, Jiacai email: 15729851920@163.com organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000 |
BookMark | eNo10MlOwzAUBVCDQKIt_QMk_AMudjwlyzZlklpANPvKiZ-pUWJXiQHx91CG1ZPuvTqLN0YnIQZA6JLRGWO0uCrLZamk0GKW0Uz-ZFRJeYSmhS5yzplkVCp5jEasEDkphNBnaDwMr5QqxSkdoY85fgbTksp3gNdvbfLkCfohBrzZm-QjqaDbx960eAE78-5jj5eQoPmuAl5D2kWLfcAP_mWX0sHYNBBgwAszgMWHzY-5jhZaXMau9uHAhnN06kw7wPTvTlB1c12Vd2T1eHtfzlfEFzwR11hua6prCTpzljW5y6CWwgkqhLM1OGWNMdaClTrPqROglWR5zbRRzgKfoItf1gPAdt_7zvSf2_8_8S8brWGO |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CCDC65474.2025.11090655 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331510565 |
EISSN | 1948-9447 |
EndPage | 2434 |
ExternalDocumentID | 11090655 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61902268 funderid: 10.13039/501100001809 |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-fcd3db07b5e72fd1c8f2eb54f4044fdbef6daaadded57880f4e76518b17a6fde3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:00:35 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-fcd3db07b5e72fd1c8f2eb54f4044fdbef6daaadded57880f4e76518b17a6fde3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_11090655 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-16 |
PublicationDateYYYYMMDD | 2025-05-16 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Chinese Control and Decision Conference |
PublicationTitleAbbrev | CCDC |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0066300 |
Score | 1.9112004 |
Snippet | The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2430 |
SubjectTerms | Behavioral sciences Classification algorithms DeepSort Location awareness Multi-person behavior detection Near-infrared videos Object detection Object tracking Pedestrians Real-time systems SlowFast Surveillance Thermal analysis Videos YOLOv8 |
Title | A Real-Time Multi-Person Spatio-Temporal Behavior Detection Method in Nighttime Scenes Based on Multi-Model Combination |
URI | https://ieeexplore.ieee.org/document/11090655 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT_ribeKdPPiarpekl0etjiFsDDdhb6NJTmA4Ohkdgr_enLT1BoJvpSRtSdJzSc73fYTcJFkmlU08mIRIMI5C7kUWRAxP_DhaxwQQKDwax8Nn_jgX8was7rAwAOCKz8DDS3eWr9dqi1tlfWTHtC5TdEjHZm41WKs1uzFyRzUFXLZZP8_vcxTWxX2TUHht1x8iKs6HDPbJuH17XTry4m0r6an3X8SM__68A9L7guvRyacjOiQ7UB6RvW9Mg8fk7ZY-2ZCQIeKDOtAtm7hYm05dSTWb1RRVK9oQJm7oPVSuTKukI6cyTZclHWMqj3L0dKrQSNI76wQ1xTbumaistqLWxth82015j8wGD7N8yBrNBbbMoooZpSMt_UQKSEKjA5WaEKTghvucGy3BxLoo0CZq-6unvuGQxCJIZZAUsdEQnZBuuS7hlFAbqtkOWVBIlfIQeJb6tldq26gYRKDPSA-HcPFas2os2tE7_-P-BdnFmcST-yC-JN1qs4UrGxBU8tothA9EDrdl |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H9QXbxPv5sHXdO2a9PKonTJ1K8NV2NtomlMYjk5Gh-CvNydtvYHgWylJW5L0nJOc830fIVd-GMpMbzyYBFcwjkLuaei4DDN-HK2jDwgUHsZe_5k_TMSkBqsbLAwAmOIzsPDS5PLVIlvhUVkH2TG1yxTrZEM7fuFUcK3G8HrIHlWXcOmGnSjqRSitiycnXWE1nX_IqBgvcrdD4ub9VfHIi7UqpZW9_6Jm_PcH7pL2F2CPjj5d0R5Zg2KfbH_jGjwgb9f0SQeFDDEf1MBu2chE23RsiqpZUpFUzWlNmbikPShNoVZBh0Znms4KGuNmHgXp6ThDM0lvtBtUFNuYZ6K22pxqK6N33GbS2yS5u02iPqtVF9gsdEuWZ8pV0valAL-bKycL8i5IwXNuc54rCbmn0hStotI_e2DnHHxPOIF0_NTLFbiHpFUsCjgiVAdrukPopDILeBd4GNi6V6DbZB4IRx2TNg7h9LXi1Zg2o3fyx_1LstlPhoPp4D5-PCVbOKuYx3e8M9Iqlys41-FBKS_MovgA_kK6rg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=A+Real-Time+Multi-Person+Spatio-Temporal+Behavior+Detection+Method+in+Nighttime+Scenes+Based+on+Multi-Model+Combination&rft.au=Zhou%2C+Jiayi&rft.au=Wang%2C+Xiaogang&rft.au=Zhan%2C+Binghan&rft.au=Wang%2C+Min&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=2430&rft.epage=2434&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090655&rft.externalDocID=11090655 |