A Real-Time Multi-Person Spatio-Temporal Behavior Detection Method in Nighttime Scenes Based on Multi-Model Combination

The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared vide...

Full description

Saved in:
Bibliographic Details
Published inChinese Control and Decision Conference pp. 2430 - 2434
Main Authors Zhou, Jiayi, Wang, Xiaogang, Zhan, Binghan, Wang, Min, Yan, Jiacai
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared videos with clear and distinct human features. However, these methods are unsuitable for near-infrared videos that are widely used in monitoring field. Because near-infrared videos have a poor imaging quality and is subject to some interferences, leading to the bad application of tracking and analyzing the online near-infrared video in real-time. Therefore, it is of significant practical value to research methods for the human body's spatio-temporal behavior detection in nearinfrared surveillance videos. Based on a self-build dataset of near-infrared videos for behavior detection, the paper proposes a spatio-temporal behavior detection method for near-infrared surveillance videos using a combination of the YOLOv8n, DeepSort, and SlowFast models. This method aims to achieve multi-person behavior detection in the night scene. The experiments indicate that on the self-build near-infrared surveillance video dataset, the YOLOv8 algorithm model for pedestrian detection at night has a precision of 98.3 %, a recall of 98.2 %, and a mAP@ 0.50 of 99.20 %. The SlowFast algorithm model for near-infrared behavior classification has a mAP@ 0.50 of 80.58%.
AbstractList The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of the individuals. Existing spatio-temporal behavior detection methods are primarily designed to analyze visible light or thermal infrared videos with clear and distinct human features. However, these methods are unsuitable for near-infrared videos that are widely used in monitoring field. Because near-infrared videos have a poor imaging quality and is subject to some interferences, leading to the bad application of tracking and analyzing the online near-infrared video in real-time. Therefore, it is of significant practical value to research methods for the human body's spatio-temporal behavior detection in nearinfrared surveillance videos. Based on a self-build dataset of near-infrared videos for behavior detection, the paper proposes a spatio-temporal behavior detection method for near-infrared surveillance videos using a combination of the YOLOv8n, DeepSort, and SlowFast models. This method aims to achieve multi-person behavior detection in the night scene. The experiments indicate that on the self-build near-infrared surveillance video dataset, the YOLOv8 algorithm model for pedestrian detection at night has a precision of 98.3 %, a recall of 98.2 %, and a mAP@ 0.50 of 99.20 %. The SlowFast algorithm model for near-infrared behavior classification has a mAP@ 0.50 of 80.58%.
Author Zhou, Jiayi
Wang, Xiaogang
Wang, Min
Zhan, Binghan
Yan, Jiacai
Author_xml – sequence: 1
  givenname: Jiayi
  surname: Zhou
  fullname: Zhou, Jiayi
  email: zhoujiayi_ls@163.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000
– sequence: 2
  givenname: Xiaogang
  surname: Wang
  fullname: Wang, Xiaogang
  email: wxg_zf@163.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000
– sequence: 3
  givenname: Binghan
  surname: Zhan
  fullname: Zhan, Binghan
  email: zbh_kkkzm@163.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000
– sequence: 4
  givenname: Min
  surname: Wang
  fullname: Wang, Min
  email: wangmin_mywm@163.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000
– sequence: 5
  givenname: Jiacai
  surname: Yan
  fullname: Yan, Jiacai
  email: 15729851920@163.com
  organization: School of Automation and Information Engineering, Sichuan University of Science and Engineering,Yibin,Sichuan,China,644000
BookMark eNo10MlOwzAUBVCDQKIt_QMk_AMudjwlyzZlklpANPvKiZ-pUWJXiQHx91CG1ZPuvTqLN0YnIQZA6JLRGWO0uCrLZamk0GKW0Uz-ZFRJeYSmhS5yzplkVCp5jEasEDkphNBnaDwMr5QqxSkdoY85fgbTksp3gNdvbfLkCfohBrzZm-QjqaDbx960eAE78-5jj5eQoPmuAl5D2kWLfcAP_mWX0sHYNBBgwAszgMWHzY-5jhZaXMau9uHAhnN06kw7wPTvTlB1c12Vd2T1eHtfzlfEFzwR11hua6prCTpzljW5y6CWwgkqhLM1OGWNMdaClTrPqROglWR5zbRRzgKfoItf1gPAdt_7zvSf2_8_8S8brWGO
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC65474.2025.11090655
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331510565
EISSN 1948-9447
EndPage 2434
ExternalDocumentID 11090655
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61902268
  funderid: 10.13039/501100001809
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-fcd3db07b5e72fd1c8f2eb54f4044fdbef6daaadded57880f4e76518b17a6fde3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-fcd3db07b5e72fd1c8f2eb54f4044fdbef6daaadded57880f4e76518b17a6fde3
PageCount 5
ParticipantIDs ieee_primary_11090655
PublicationCentury 2000
PublicationDate 2025-May-16
PublicationDateYYYYMMDD 2025-05-16
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-16
  day: 16
PublicationDecade 2020
PublicationTitle Chinese Control and Decision Conference
PublicationTitleAbbrev CCDC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.9112004
Snippet The human spatio-temporal behavior detection in online videos involves detecting human behavior while simultaneously locating the spatio-temporal positions of...
SourceID ieee
SourceType Publisher
StartPage 2430
SubjectTerms Behavioral sciences
Classification algorithms
DeepSort
Location awareness
Multi-person behavior detection
Near-infrared videos
Object detection
Object tracking
Pedestrians
Real-time systems
SlowFast
Surveillance
Thermal analysis
Videos
YOLOv8
Title A Real-Time Multi-Person Spatio-Temporal Behavior Detection Method in Nighttime Scenes Based on Multi-Model Combination
URI https://ieeexplore.ieee.org/document/11090655
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uT_ribeKdPPiarpekl0etjiFsDDdhb6NJTmA4Ohkdgr_enLT1BoJvpSRtSdJzSc73fYTcJFkmlU08mIRIMI5C7kUWRAxP_DhaxwQQKDwax8Nn_jgX8was7rAwAOCKz8DDS3eWr9dqi1tlfWTHtC5TdEjHZm41WKs1uzFyRzUFXLZZP8_vcxTWxX2TUHht1x8iKs6HDPbJuH17XTry4m0r6an3X8SM__68A9L7guvRyacjOiQ7UB6RvW9Mg8fk7ZY-2ZCQIeKDOtAtm7hYm05dSTWb1RRVK9oQJm7oPVSuTKukI6cyTZclHWMqj3L0dKrQSNI76wQ1xTbumaistqLWxth82015j8wGD7N8yBrNBbbMoooZpSMt_UQKSEKjA5WaEKTghvucGy3BxLoo0CZq-6unvuGQxCJIZZAUsdEQnZBuuS7hlFAbqtkOWVBIlfIQeJb6tldq26gYRKDPSA-HcPFas2os2tE7_-P-BdnFmcST-yC-JN1qs4UrGxBU8tothA9EDrdl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H9QXbxPv5sHXdO2a9PKonTJ1K8NV2NtomlMYjk5Gh-CvNydtvYHgWylJW5L0nJOc830fIVd-GMpMbzyYBFcwjkLuaei4DDN-HK2jDwgUHsZe_5k_TMSkBqsbLAwAmOIzsPDS5PLVIlvhUVkH2TG1yxTrZEM7fuFUcK3G8HrIHlWXcOmGnSjqRSitiycnXWE1nX_IqBgvcrdD4ub9VfHIi7UqpZW9_6Jm_PcH7pL2F2CPjj5d0R5Zg2KfbH_jGjwgb9f0SQeFDDEf1MBu2chE23RsiqpZUpFUzWlNmbikPShNoVZBh0Znms4KGuNmHgXp6ThDM0lvtBtUFNuYZ6K22pxqK6N33GbS2yS5u02iPqtVF9gsdEuWZ8pV0valAL-bKycL8i5IwXNuc54rCbmn0hStotI_e2DnHHxPOIF0_NTLFbiHpFUsCjgiVAdrukPopDILeBd4GNi6V6DbZB4IRx2TNg7h9LXi1Zg2o3fyx_1LstlPhoPp4D5-PCVbOKuYx3e8M9Iqlys41-FBKS_MovgA_kK6rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=A+Real-Time+Multi-Person+Spatio-Temporal+Behavior+Detection+Method+in+Nighttime+Scenes+Based+on+Multi-Model+Combination&rft.au=Zhou%2C+Jiayi&rft.au=Wang%2C+Xiaogang&rft.au=Zhan%2C+Binghan&rft.au=Wang%2C+Min&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=2430&rft.epage=2434&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090655&rft.externalDocID=11090655