Reconstruction of EEG and ECG from Single Channel Mixture using Branched Autoencoder based Separable Representations
The growing use of wearable devices requires accurate and compact representations of high dimensional physiological signals. This work presents a UNet inspired autoencoder to represent and reconstruct multiple neuro-physiological signals from single channel data. The architecture comprises single-en...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 1 - 5 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
06.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The growing use of wearable devices requires accurate and compact representations of high dimensional physiological signals. This work presents a UNet inspired autoencoder to represent and reconstruct multiple neuro-physiological signals from single channel data. The architecture comprises single-encoder/dual-branched decoders to obtain self-attention enabled compact embeddings of mixed ExG (EEG /ECG) signals through decaying encoder-decoder skip connections, for improved representation capability. The embeddings are separable into individual ExG components enabling simultaneous reconstruction of high fidelity EEG and ECG sources. The pretrained encoder can be used for a complex downstream task with minimum fine-tuning. Using the proposed method on a large corpus of single-channel mixed ExG generated from overnight Polysomnography (PSG) recordings, we show subject- and class- independent EEG/ECG reconstructions validated by multiple domain-specific metrics, and evaluate the classification performance of the encoded EEG embeddings into five sleep stages as a downstream task. |
---|---|
AbstractList | The growing use of wearable devices requires accurate and compact representations of high dimensional physiological signals. This work presents a UNet inspired autoencoder to represent and reconstruct multiple neuro-physiological signals from single channel data. The architecture comprises single-encoder/dual-branched decoders to obtain self-attention enabled compact embeddings of mixed ExG (EEG /ECG) signals through decaying encoder-decoder skip connections, for improved representation capability. The embeddings are separable into individual ExG components enabling simultaneous reconstruction of high fidelity EEG and ECG sources. The pretrained encoder can be used for a complex downstream task with minimum fine-tuning. Using the proposed method on a large corpus of single-channel mixed ExG generated from overnight Polysomnography (PSG) recordings, we show subject- and class- independent EEG/ECG reconstructions validated by multiple domain-specific metrics, and evaluate the classification performance of the encoded EEG embeddings into five sleep stages as a downstream task. |
Author | Datta, Shreyasi Gubbi, Jayavardhana Pal, Arpan |
Author_xml | – sequence: 1 givenname: Shreyasi surname: Datta fullname: Datta, Shreyasi email: shreyasi.datta@tcs.com organization: TCS Research,India – sequence: 2 givenname: Jayavardhana surname: Gubbi fullname: Gubbi, Jayavardhana email: jay.gubbi@tcs.com organization: TCS Research,India – sequence: 3 givenname: Arpan surname: Pal fullname: Pal, Arpan email: arpan.pal@tcs.com organization: TCS Research,India |
BookMark | eNo1UMlOwzAUNAgk2tI_4GA-IMVL4uVYolCQikBND9wqJ3mmQa1d2Y4Ef08QcBppnmZ5M0UXzjtA6JaSBaVE3z2Vy7p-zbUQZMEIKxaUKCWVkGdorqVWvCBcKJnTczRhXOqMavJ2haYxfhBCxoOaoLSB1ruYwtCm3jvsLa6qFTauw1W5wjb4I657934AXO6Nc3DAz_1nGgLgIY48vg_GtXvo8HJIHlzrOwi4MXFkajiZYJpRuoFTgAgumZ-QeI0urTlEmP_hDG0fqm35mK1fVuNT66zXPGVWaGXzhow9qdJMyE5yYxpgxhQdkY3Qtug4IxoE0E4aK5TIIacE8pZZYHyGbn5tewDYnUJ_NOFr9z8S_wbNDWAz |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP49660.2025.10887867 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350368741 |
EISSN | 2379-190X |
EndPage | 5 |
ExternalDocumentID | 10887867 |
Genre | orig-research |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i93t-f698f4b0748189267d73aabe2aa5d07b69f5d3209e6e1d7af6864e410e4c2fe23 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 30 06:10:24 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-f698f4b0748189267d73aabe2aa5d07b69f5d3209e6e1d7af6864e410e4c2fe23 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10887867 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-6 |
PublicationDateYYYYMMDD | 2025-04-06 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-6 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.2878401 |
Snippet | The growing use of wearable devices requires accurate and compact representations of high dimensional physiological signals. This work presents a UNet inspired... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | attention Autoencoder Autoencoders Brain modeling ECG EEG Electrocardiography Electroencephalography Feature extraction reconstruction Recording representation Sleep Speech processing Tuning Wearable devices |
Title | Reconstruction of EEG and ECG from Single Channel Mixture using Branched Autoencoder based Separable Representations |
URI | https://ieeexplore.ieee.org/document/10887867 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uD6Iv_pr4mwi-tm5pmrSPc3SbgmPYCXsbSXPR4WhFOxD_epOs21QQfCuloeWSy-V63_cdQleKa7OQSGRL_9yjUSw8oY3jhWazDCilimmn9jlg_Ud6Nw7HFVndcWEAwIHPwLeXrpavimxuf5UZDzcuETFeQzWTuS3IWqttN-I02kSXlYjm9W2nnaZDasUnTRZIQn85-EcbFRdFujtosHz_Ajzy4s9L6Wefv6QZ__2Bu6ixJuzh4SoU7aENyPfR9jetwQNU2kRzLReLC42TpIdFrnDS6WFLM8GpeXIG2DIOcpjh--mHrS9gi41_wje2BcczKNyel4WVv1Twhm0QVDgFqyAuzdAHB6yt-Ez5ewONusmo0_eqlgveNA5KT7M40lSaY4WJ4zFhXPFACAlEiFA1uWSxDlVAmjEwaCkuNIsYBdpqAs2IBhIconpe5HCEMBAqNWMhtMCk4CwTLNBSiybnPNOUqGPUsPabvC5ENSZL0538cf8UbdlpdKAZdobqxlxwbs4Dpbxw6-ALLBa15A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46wcuLt4l3I_jauqZp0j7O0bnpNoadsLeRNic6HK1oB-KvN-m6TQXBtxIaCKc5OTk93_cdhK4kV3ojEd-U_rlF_UBYQmnH8_Rh6VJKJVOF2mePtR7p3dAblmT1ggsDAAX4DGzzWNTyZZZMza8y7eHaJXzGV9GaDvyeM6NrLQ5en1N_HV2WMprX7UY9ivrUyE_qPJB49nz6j0YqRRxpbqPefAUz-MiLPc1jO_n8Jc747yXuoOqSsof7i2C0i1Yg3UNb39QG91FuUs2lYCzOFA7DWyxSicPGLTZEExzpNyeADecghQnujj9MhQEbdPwTvjFNOJ5B4vo0z4wApoQ3bMKgxBEYDfFYT30ooLUloyl9r6JBMxw0WlbZdMEaB25uKRb4isb6YqEjeUAYl9wVIgYihCdrPGaB8qRLagEwcCQXivmMAnVqQBOigLgHqJJmKRwiDITGijEPHNBJOEsEc1WsRI1znihK5BGqGvuNXmeyGqO56Y7_GL9AG61BtzPqtHv3J2jTfNICQsNOUUWbDs707SCPz4s98QXUC7kt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Reconstruction+of+EEG+and+ECG+from+Single+Channel+Mixture+using+Branched+Autoencoder+based+Separable+Representations&rft.au=Datta%2C+Shreyasi&rft.au=Gubbi%2C+Jayavardhana&rft.au=Pal%2C+Arpan&rft.date=2025-04-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49660.2025.10887867&rft.externalDocID=10887867 |