Reconstruction of EEG and ECG from Single Channel Mixture using Branched Autoencoder based Separable Representations

The growing use of wearable devices requires accurate and compact representations of high dimensional physiological signals. This work presents a UNet inspired autoencoder to represent and reconstruct multiple neuro-physiological signals from single channel data. The architecture comprises single-en...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 1 - 5
Main Authors Datta, Shreyasi, Gubbi, Jayavardhana, Pal, Arpan
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The growing use of wearable devices requires accurate and compact representations of high dimensional physiological signals. This work presents a UNet inspired autoencoder to represent and reconstruct multiple neuro-physiological signals from single channel data. The architecture comprises single-encoder/dual-branched decoders to obtain self-attention enabled compact embeddings of mixed ExG (EEG /ECG) signals through decaying encoder-decoder skip connections, for improved representation capability. The embeddings are separable into individual ExG components enabling simultaneous reconstruction of high fidelity EEG and ECG sources. The pretrained encoder can be used for a complex downstream task with minimum fine-tuning. Using the proposed method on a large corpus of single-channel mixed ExG generated from overnight Polysomnography (PSG) recordings, we show subject- and class- independent EEG/ECG reconstructions validated by multiple domain-specific metrics, and evaluate the classification performance of the encoded EEG embeddings into five sleep stages as a downstream task.
AbstractList The growing use of wearable devices requires accurate and compact representations of high dimensional physiological signals. This work presents a UNet inspired autoencoder to represent and reconstruct multiple neuro-physiological signals from single channel data. The architecture comprises single-encoder/dual-branched decoders to obtain self-attention enabled compact embeddings of mixed ExG (EEG /ECG) signals through decaying encoder-decoder skip connections, for improved representation capability. The embeddings are separable into individual ExG components enabling simultaneous reconstruction of high fidelity EEG and ECG sources. The pretrained encoder can be used for a complex downstream task with minimum fine-tuning. Using the proposed method on a large corpus of single-channel mixed ExG generated from overnight Polysomnography (PSG) recordings, we show subject- and class- independent EEG/ECG reconstructions validated by multiple domain-specific metrics, and evaluate the classification performance of the encoded EEG embeddings into five sleep stages as a downstream task.
Author Datta, Shreyasi
Gubbi, Jayavardhana
Pal, Arpan
Author_xml – sequence: 1
  givenname: Shreyasi
  surname: Datta
  fullname: Datta, Shreyasi
  email: shreyasi.datta@tcs.com
  organization: TCS Research,India
– sequence: 2
  givenname: Jayavardhana
  surname: Gubbi
  fullname: Gubbi, Jayavardhana
  email: jay.gubbi@tcs.com
  organization: TCS Research,India
– sequence: 3
  givenname: Arpan
  surname: Pal
  fullname: Pal, Arpan
  email: arpan.pal@tcs.com
  organization: TCS Research,India
BookMark eNo1UMlOwzAUNAgk2tI_4GA-IMVL4uVYolCQikBND9wqJ3mmQa1d2Y4Ef08QcBppnmZ5M0UXzjtA6JaSBaVE3z2Vy7p-zbUQZMEIKxaUKCWVkGdorqVWvCBcKJnTczRhXOqMavJ2haYxfhBCxoOaoLSB1ruYwtCm3jvsLa6qFTauw1W5wjb4I657934AXO6Nc3DAz_1nGgLgIY48vg_GtXvo8HJIHlzrOwi4MXFkajiZYJpRuoFTgAgumZ-QeI0urTlEmP_hDG0fqm35mK1fVuNT66zXPGVWaGXzhow9qdJMyE5yYxpgxhQdkY3Qtug4IxoE0E4aK5TIIacE8pZZYHyGbn5tewDYnUJ_NOFr9z8S_wbNDWAz
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP49660.2025.10887867
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350368741
EISSN 2379-190X
EndPage 5
ExternalDocumentID 10887867
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i93t-f698f4b0748189267d73aabe2aa5d07b69f5d3209e6e1d7af6864e410e4c2fe23
IEDL.DBID RIE
IngestDate Wed Jul 30 06:10:24 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-f698f4b0748189267d73aabe2aa5d07b69f5d3209e6e1d7af6864e410e4c2fe23
PageCount 5
ParticipantIDs ieee_primary_10887867
PublicationCentury 2000
PublicationDate 2025-April-6
PublicationDateYYYYMMDD 2025-04-06
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2878401
Snippet The growing use of wearable devices requires accurate and compact representations of high dimensional physiological signals. This work presents a UNet inspired...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms attention
Autoencoder
Autoencoders
Brain modeling
ECG
EEG
Electrocardiography
Electroencephalography
Feature extraction
reconstruction
Recording
representation
Sleep
Speech processing
Tuning
Wearable devices
Title Reconstruction of EEG and ECG from Single Channel Mixture using Branched Autoencoder based Separable Representations
URI https://ieeexplore.ieee.org/document/10887867
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uD6Iv_pr4mwi-tm5pmrSPc3SbgmPYCXsbSXPR4WhFOxD_epOs21QQfCuloeWSy-V63_cdQleKa7OQSGRL_9yjUSw8oY3jhWazDCilimmn9jlg_Ud6Nw7HFVndcWEAwIHPwLeXrpavimxuf5UZDzcuETFeQzWTuS3IWqttN-I02kSXlYjm9W2nnaZDasUnTRZIQn85-EcbFRdFujtosHz_Ajzy4s9L6Wefv6QZ__2Bu6ixJuzh4SoU7aENyPfR9jetwQNU2kRzLReLC42TpIdFrnDS6WFLM8GpeXIG2DIOcpjh--mHrS9gi41_wje2BcczKNyel4WVv1Twhm0QVDgFqyAuzdAHB6yt-Ez5ewONusmo0_eqlgveNA5KT7M40lSaY4WJ4zFhXPFACAlEiFA1uWSxDlVAmjEwaCkuNIsYBdpqAs2IBhIconpe5HCEMBAqNWMhtMCk4CwTLNBSiybnPNOUqGPUsPabvC5ENSZL0538cf8UbdlpdKAZdobqxlxwbs4Dpbxw6-ALLBa15A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46wcuLt4l3I_jauqZp0j7O0bnpNoadsLeRNic6HK1oB-KvN-m6TQXBtxIaCKc5OTk93_cdhK4kV3ojEd-U_rlF_UBYQmnH8_Rh6VJKJVOF2mePtR7p3dAblmT1ggsDAAX4DGzzWNTyZZZMza8y7eHaJXzGV9GaDvyeM6NrLQ5en1N_HV2WMprX7UY9ivrUyE_qPJB49nz6j0YqRRxpbqPefAUz-MiLPc1jO_n8Jc747yXuoOqSsof7i2C0i1Yg3UNb39QG91FuUs2lYCzOFA7DWyxSicPGLTZEExzpNyeADecghQnujj9MhQEbdPwTvjFNOJ5B4vo0z4wApoQ3bMKgxBEYDfFYT30ooLUloyl9r6JBMxw0WlbZdMEaB25uKRb4isb6YqEjeUAYl9wVIgYihCdrPGaB8qRLagEwcCQXivmMAnVqQBOigLgHqJJmKRwiDITGijEPHNBJOEsEc1WsRI1znihK5BGqGvuNXmeyGqO56Y7_GL9AG61BtzPqtHv3J2jTfNICQsNOUUWbDs707SCPz4s98QXUC7kt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Reconstruction+of+EEG+and+ECG+from+Single+Channel+Mixture+using+Branched+Autoencoder+based+Separable+Representations&rft.au=Datta%2C+Shreyasi&rft.au=Gubbi%2C+Jayavardhana&rft.au=Pal%2C+Arpan&rft.date=2025-04-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49660.2025.10887867&rft.externalDocID=10887867