A Novel Intelligent Intrusion Detection and Prevention Framework for Shore-Ship Hybrid AC/DC Microgrids Under Power Quality Disturbances
This paper presents an adaptive deep neural network (DNN) approach for intrusion detection and prevention in shipboard AC/DC microgrids, focusing on shore-to-ship power connections and power quality (PQ) challenges. The method addresses false data injection attacks (FDIAs) that disrupt secondary con...
Saved in:
Published in | Conference record of the Industry Applications Conference pp. 1 - 7 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
15.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2576-702X |
DOI | 10.1109/IAS62731.2025.11061392 |
Cover
Abstract | This paper presents an adaptive deep neural network (DNN) approach for intrusion detection and prevention in shipboard AC/DC microgrids, focusing on shore-to-ship power connections and power quality (PQ) challenges. The method addresses false data injection attacks (FDIAs) that disrupt secondary control, leading to voltage and current regulation failures. By integrating Fast Fourier Transform (FFT) for frequency-domain feature extractions such as voltage sag/swell, harmonics, and transient distortions with DNN classification, the model achieves high accuracy in detecting cyberattacks under PQ disturbances. Optimized using the Adam optimizer and ReLU-sigmoid activation, the framework enhances detection accuracy while reducing false positives. The obtained results demonstrate superior performance of FFT-DNN over state-of-the-art methods, achieving 97.7% accuracy across attack scenarios. The approach effectively classifies between cyber-intrusions and power quality disturbances, offering a scalable cybersecurity solution for maritime systems. This study advances secure and resilient shore-ship DC microgrids by addressing cybersecurity vulnerabilities and power quality challenges in shore-power connections. |
---|---|
AbstractList | This paper presents an adaptive deep neural network (DNN) approach for intrusion detection and prevention in shipboard AC/DC microgrids, focusing on shore-to-ship power connections and power quality (PQ) challenges. The method addresses false data injection attacks (FDIAs) that disrupt secondary control, leading to voltage and current regulation failures. By integrating Fast Fourier Transform (FFT) for frequency-domain feature extractions such as voltage sag/swell, harmonics, and transient distortions with DNN classification, the model achieves high accuracy in detecting cyberattacks under PQ disturbances. Optimized using the Adam optimizer and ReLU-sigmoid activation, the framework enhances detection accuracy while reducing false positives. The obtained results demonstrate superior performance of FFT-DNN over state-of-the-art methods, achieving 97.7% accuracy across attack scenarios. The approach effectively classifies between cyber-intrusions and power quality disturbances, offering a scalable cybersecurity solution for maritime systems. This study advances secure and resilient shore-ship DC microgrids by addressing cybersecurity vulnerabilities and power quality challenges in shore-power connections. |
Author | Parise, Giuseppe Su, Chun-Lien Sadiq, Muhammad Hussain, Tahir Sayler, Kent Ali, Zulfiqar Rouhani, Seyed Hossein |
Author_xml | – sequence: 1 givenname: Zulfiqar surname: Ali fullname: Ali, Zulfiqar email: i110154116@nkust.edu.tw organization: National Kaohsiung University of Science and Technology,Department of Electrical Engineering,Kaohsiung City,Taiwan – sequence: 2 givenname: Tahir surname: Hussain fullname: Hussain, Tahir email: f2240014@gl.cc.uec.ac.jp organization: The University of Electro-Communication,Graduate School of Informatics and Engineering,Department of Informatics,Tokyo,Japan – sequence: 3 givenname: Chun-Lien surname: Su fullname: Su, Chun-Lien email: cls@nkust.edu.tw organization: National Kaohsiung University of Science and Technology,Department of Electrical Engineering,Kaohsiung City,Taiwan – sequence: 4 givenname: Giuseppe surname: Parise fullname: Parise, Giuseppe email: giuseppe.parise@uniroma1.it organization: Engineering Fac. Sapienza Univ. of Rome,Former Dept. DIAEE Civil & Industrial,Italy – sequence: 5 givenname: Kent surname: Sayler fullname: Sayler, Kent email: Kent.sayler@ieee.org organization: Kimley-Horn and Associates,Long Beach,California,USA – sequence: 6 givenname: Muhammad surname: Sadiq fullname: Sadiq, Muhammad email: muhammad.sadiq@um.edu.mt organization: University of Malta,Department of Electrical Engineering,Msida,Malta,MSD 2080 – sequence: 7 givenname: Seyed Hossein surname: Rouhani fullname: Rouhani, Seyed Hossein email: hosseinrouhani@nkust.edu.tw.org organization: National Kaohsiung University of Science and Technology,Department of Electrical Engineering,Kaohsiung City,Taiwan |
BookMark | eNo1kOFOwjAUhavRREHewJi-wKBd13b9uQwRElQMmPiPdNsdVEdLugHhDXxst6h_7v3OPclNzumhK-ssIPRAyZBSokazZClCyegwJCHvToIyFV6ggZIxFYJHXEohL9FtyKUIJAk_blCvrj8JISwW9BZ9J_jFHaHCM9tAVZkN2KZjf6iNs3gMDeRNR9oWeOHh2PqdnHi9g5PzX7h0Hi-3zkOw3Jo9np4zbwqcpKNxip9N7t2m1TV-twV4vHCndr4ddGWaMx6bujn4TNsc6jt0XeqqhsHf7qPV5HGVToP569MsTeaBUawJgOcapOJxEQEvNZBMcpWxjJRxTEtCWR4LUrSRSZxrkXMFWkSy1KygPCsjxfro_vetAYD13pud9uf1f3HsB4_lZsc |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IAS62731.2025.11061392 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781665457767 1665457767 |
EISSN | 2576-702X |
EndPage | 7 |
ExternalDocumentID | 11061392 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Science and Technology Council funderid: 10.13039/501100020950 |
GroupedDBID | 6IE 6IF 6IH 6IK 6IM AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIO RNS |
ID | FETCH-LOGICAL-i93t-e5cae7958d4e5fae0b759b3b0f881f013c860d76708ca6c59ea647fa3d15bf493 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:14:03 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-e5cae7958d4e5fae0b759b3b0f881f013c860d76708ca6c59ea647fa3d15bf493 |
PageCount | 7 |
ParticipantIDs | ieee_primary_11061392 |
PublicationCentury | 2000 |
PublicationDate | 2025-June-15 |
PublicationDateYYYYMMDD | 2025-06-15 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Conference record of the Industry Applications Conference |
PublicationTitleAbbrev | IAS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003861 |
Score | 2.2941062 |
Snippet | This paper presents an adaptive deep neural network (DNN) approach for intrusion detection and prevention in shipboard AC/DC microgrids, focusing on... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Artificial neural networks Cybersecurity Deep learning Fast Fourier Transform Fast Fourier transforms Feature extraction Intrusion detection Microgrids Power quality Prevention and mitigation Shore-Shipboard Microgrid Transient analysis Voltage fluctuations |
Title | A Novel Intelligent Intrusion Detection and Prevention Framework for Shore-Ship Hybrid AC/DC Microgrids Under Power Quality Disturbances |
URI | https://ieeexplore.ieee.org/document/11061392 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LagIxFA3VVbvpy9I3WXQbnThJJlmKVmxBEbTgTpJMUqVlFJ0p2C_oZzeZcewDCt0lgWHCzSX3JjnnXADuSBhY1lQEGUEEIhrHiBttkdUYM-WWxWJPFO4PWO-JPE7oZEtWz7kwxpgcfGbqvpm_5ccLnfmrsgb25xcX0Cug4vysIGvttt2QM7ylAONANB5aI-ZCsz8CNmm9_PJHDZU8hHQPwaD8eYEcealnqarr91-6jP-e3RGofbH14HAXh47BnklOwME3ocFT8NGCg8WbeYUPOwXO1LdXmb8sgx2T5oisBMokhqWqk-t2S-gWdLktHM3clNBoNl_C3sYzvWCr3ei0Yd-D-p5dfw3zMkpw6EuvwUKeYwM7zpOylfLuta6Bcfd-3O6hbQ0GNBdhigzV0kSC8pgYaqUJVESFClVgOcfWpY-asyCOWBRwLZmmwkhGIivDGFNliQjPQDVZJOYcQMG1kDoQoc_atKVCChZLt4cwi6XgzQtQ8zadLguVjWlpzss_xq_Avl9aD9vC9BpUncnMjUsQUnWbO8YnT1C8iA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFG0UF-rGF8a3XbgdmDJtp10SkIACIQETdqTttEI0A4EZE_wCP9t2YPCRmLhrm0ymub3pvW3POReAOxz4hlYk9jTH3MMKRR7TynhGIUSlXRaDHFG406XNJ_wwJMM1WT3jwmitM_CZLrlm9pYfTVXqrsrKyJ1fbEDfBjs28GOyomttNt6AUbQmASOfl1vVPrXB2R0CK6SUf_ujikoWRBoHoJv_foUdeSmliSyp91_KjP-e3yEofvH1YG8TiY7Alo6Pwf43qcET8FGF3embfoWtjQZn4trz1F2XwbpOMkxWDEUcwVzXyXYbOXgL2uwW9sd2Sl5_PJnB5tJxvWC1Vq7XYMfB-p5tfwGzQkqw54qvwZVAxxLWrS-lc-kcbFEEg8b9oNb01lUYvAkPEk8TJXTICYuwJkZoX4aEy0D6hjFkbAKpGPWjkIY-U4IqwrWgODQiiBCRBvPgFBTiaazPAORMcaF8Hri8TRnCBaeRsLsINUhwVjkHRWfT0WylszHKzXnxx_gt2G0OOu1Ru9V9vAR7bpkdiAuRK1Cw5tPXNl1I5E3mJJ9X4r_V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+of+the+Industry+Applications+Conference&rft.atitle=A+Novel+Intelligent+Intrusion+Detection+and+Prevention+Framework+for+Shore-Ship+Hybrid+AC%2FDC+Microgrids+Under+Power+Quality+Disturbances&rft.au=Ali%2C+Zulfiqar&rft.au=Hussain%2C+Tahir&rft.au=Su%2C+Chun-Lien&rft.au=Parise%2C+Giuseppe&rft.date=2025-06-15&rft.pub=IEEE&rft.eissn=2576-702X&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FIAS62731.2025.11061392&rft.externalDocID=11061392 |