A Novel Intelligent Intrusion Detection and Prevention Framework for Shore-Ship Hybrid AC/DC Microgrids Under Power Quality Disturbances

This paper presents an adaptive deep neural network (DNN) approach for intrusion detection and prevention in shipboard AC/DC microgrids, focusing on shore-to-ship power connections and power quality (PQ) challenges. The method addresses false data injection attacks (FDIAs) that disrupt secondary con...

Full description

Saved in:
Bibliographic Details
Published inConference record of the Industry Applications Conference pp. 1 - 7
Main Authors Ali, Zulfiqar, Hussain, Tahir, Su, Chun-Lien, Parise, Giuseppe, Sayler, Kent, Sadiq, Muhammad, Rouhani, Seyed Hossein
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.06.2025
Subjects
Online AccessGet full text
ISSN2576-702X
DOI10.1109/IAS62731.2025.11061392

Cover

Abstract This paper presents an adaptive deep neural network (DNN) approach for intrusion detection and prevention in shipboard AC/DC microgrids, focusing on shore-to-ship power connections and power quality (PQ) challenges. The method addresses false data injection attacks (FDIAs) that disrupt secondary control, leading to voltage and current regulation failures. By integrating Fast Fourier Transform (FFT) for frequency-domain feature extractions such as voltage sag/swell, harmonics, and transient distortions with DNN classification, the model achieves high accuracy in detecting cyberattacks under PQ disturbances. Optimized using the Adam optimizer and ReLU-sigmoid activation, the framework enhances detection accuracy while reducing false positives. The obtained results demonstrate superior performance of FFT-DNN over state-of-the-art methods, achieving 97.7% accuracy across attack scenarios. The approach effectively classifies between cyber-intrusions and power quality disturbances, offering a scalable cybersecurity solution for maritime systems. This study advances secure and resilient shore-ship DC microgrids by addressing cybersecurity vulnerabilities and power quality challenges in shore-power connections.
AbstractList This paper presents an adaptive deep neural network (DNN) approach for intrusion detection and prevention in shipboard AC/DC microgrids, focusing on shore-to-ship power connections and power quality (PQ) challenges. The method addresses false data injection attacks (FDIAs) that disrupt secondary control, leading to voltage and current regulation failures. By integrating Fast Fourier Transform (FFT) for frequency-domain feature extractions such as voltage sag/swell, harmonics, and transient distortions with DNN classification, the model achieves high accuracy in detecting cyberattacks under PQ disturbances. Optimized using the Adam optimizer and ReLU-sigmoid activation, the framework enhances detection accuracy while reducing false positives. The obtained results demonstrate superior performance of FFT-DNN over state-of-the-art methods, achieving 97.7% accuracy across attack scenarios. The approach effectively classifies between cyber-intrusions and power quality disturbances, offering a scalable cybersecurity solution for maritime systems. This study advances secure and resilient shore-ship DC microgrids by addressing cybersecurity vulnerabilities and power quality challenges in shore-power connections.
Author Parise, Giuseppe
Su, Chun-Lien
Sadiq, Muhammad
Hussain, Tahir
Sayler, Kent
Ali, Zulfiqar
Rouhani, Seyed Hossein
Author_xml – sequence: 1
  givenname: Zulfiqar
  surname: Ali
  fullname: Ali, Zulfiqar
  email: i110154116@nkust.edu.tw
  organization: National Kaohsiung University of Science and Technology,Department of Electrical Engineering,Kaohsiung City,Taiwan
– sequence: 2
  givenname: Tahir
  surname: Hussain
  fullname: Hussain, Tahir
  email: f2240014@gl.cc.uec.ac.jp
  organization: The University of Electro-Communication,Graduate School of Informatics and Engineering,Department of Informatics,Tokyo,Japan
– sequence: 3
  givenname: Chun-Lien
  surname: Su
  fullname: Su, Chun-Lien
  email: cls@nkust.edu.tw
  organization: National Kaohsiung University of Science and Technology,Department of Electrical Engineering,Kaohsiung City,Taiwan
– sequence: 4
  givenname: Giuseppe
  surname: Parise
  fullname: Parise, Giuseppe
  email: giuseppe.parise@uniroma1.it
  organization: Engineering Fac. Sapienza Univ. of Rome,Former Dept. DIAEE Civil & Industrial,Italy
– sequence: 5
  givenname: Kent
  surname: Sayler
  fullname: Sayler, Kent
  email: Kent.sayler@ieee.org
  organization: Kimley-Horn and Associates,Long Beach,California,USA
– sequence: 6
  givenname: Muhammad
  surname: Sadiq
  fullname: Sadiq, Muhammad
  email: muhammad.sadiq@um.edu.mt
  organization: University of Malta,Department of Electrical Engineering,Msida,Malta,MSD 2080
– sequence: 7
  givenname: Seyed Hossein
  surname: Rouhani
  fullname: Rouhani, Seyed Hossein
  email: hosseinrouhani@nkust.edu.tw.org
  organization: National Kaohsiung University of Science and Technology,Department of Electrical Engineering,Kaohsiung City,Taiwan
BookMark eNo1kOFOwjAUhavRREHewJi-wKBd13b9uQwRElQMmPiPdNsdVEdLugHhDXxst6h_7v3OPclNzumhK-ssIPRAyZBSokazZClCyegwJCHvToIyFV6ggZIxFYJHXEohL9FtyKUIJAk_blCvrj8JISwW9BZ9J_jFHaHCM9tAVZkN2KZjf6iNs3gMDeRNR9oWeOHh2PqdnHi9g5PzX7h0Hi-3zkOw3Jo9np4zbwqcpKNxip9N7t2m1TV-twV4vHCndr4ddGWaMx6bujn4TNsc6jt0XeqqhsHf7qPV5HGVToP569MsTeaBUawJgOcapOJxEQEvNZBMcpWxjJRxTEtCWR4LUrSRSZxrkXMFWkSy1KygPCsjxfro_vetAYD13pud9uf1f3HsB4_lZsc
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IAS62731.2025.11061392
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665457767
1665457767
EISSN 2576-702X
EndPage 7
ExternalDocumentID 11061392
Genre orig-research
GrantInformation_xml – fundername: National Science and Technology Council
  funderid: 10.13039/501100020950
GroupedDBID 6IE
6IF
6IH
6IK
6IM
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIO
RNS
ID FETCH-LOGICAL-i93t-e5cae7958d4e5fae0b759b3b0f881f013c860d76708ca6c59ea647fa3d15bf493
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-e5cae7958d4e5fae0b759b3b0f881f013c860d76708ca6c59ea647fa3d15bf493
PageCount 7
ParticipantIDs ieee_primary_11061392
PublicationCentury 2000
PublicationDate 2025-June-15
PublicationDateYYYYMMDD 2025-06-15
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-15
  day: 15
PublicationDecade 2020
PublicationTitle Conference record of the Industry Applications Conference
PublicationTitleAbbrev IAS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003861
Score 2.2941062
Snippet This paper presents an adaptive deep neural network (DNN) approach for intrusion detection and prevention in shipboard AC/DC microgrids, focusing on...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Artificial neural networks
Cybersecurity
Deep learning
Fast Fourier Transform
Fast Fourier transforms
Feature extraction
Intrusion detection
Microgrids
Power quality
Prevention and mitigation
Shore-Shipboard Microgrid
Transient analysis
Voltage fluctuations
Title A Novel Intelligent Intrusion Detection and Prevention Framework for Shore-Ship Hybrid AC/DC Microgrids Under Power Quality Disturbances
URI https://ieeexplore.ieee.org/document/11061392
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LagIxFA3VVbvpy9I3WXQbnThJJlmKVmxBEbTgTpJMUqVlFJ0p2C_oZzeZcewDCt0lgWHCzSX3JjnnXADuSBhY1lQEGUEEIhrHiBttkdUYM-WWxWJPFO4PWO-JPE7oZEtWz7kwxpgcfGbqvpm_5ccLnfmrsgb25xcX0Cug4vysIGvttt2QM7ylAONANB5aI-ZCsz8CNmm9_PJHDZU8hHQPwaD8eYEcealnqarr91-6jP-e3RGofbH14HAXh47BnklOwME3ocFT8NGCg8WbeYUPOwXO1LdXmb8sgx2T5oisBMokhqWqk-t2S-gWdLktHM3clNBoNl_C3sYzvWCr3ei0Yd-D-p5dfw3zMkpw6EuvwUKeYwM7zpOylfLuta6Bcfd-3O6hbQ0GNBdhigzV0kSC8pgYaqUJVESFClVgOcfWpY-asyCOWBRwLZmmwkhGIivDGFNliQjPQDVZJOYcQMG1kDoQoc_atKVCChZLt4cwi6XgzQtQ8zadLguVjWlpzss_xq_Avl9aD9vC9BpUncnMjUsQUnWbO8YnT1C8iA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LTgIxFG0UF-rGF8a3XbgdmDJtp10SkIACIQETdqTttEI0A4EZE_wCP9t2YPCRmLhrm0ymub3pvW3POReAOxz4hlYk9jTH3MMKRR7TynhGIUSlXRaDHFG406XNJ_wwJMM1WT3jwmitM_CZLrlm9pYfTVXqrsrKyJ1fbEDfBjs28GOyomttNt6AUbQmASOfl1vVPrXB2R0CK6SUf_ujikoWRBoHoJv_foUdeSmliSyp91_KjP-e3yEofvH1YG8TiY7Alo6Pwf43qcET8FGF3embfoWtjQZn4trz1F2XwbpOMkxWDEUcwVzXyXYbOXgL2uwW9sd2Sl5_PJnB5tJxvWC1Vq7XYMfB-p5tfwGzQkqw54qvwZVAxxLWrS-lc-kcbFEEg8b9oNb01lUYvAkPEk8TJXTICYuwJkZoX4aEy0D6hjFkbAKpGPWjkIY-U4IqwrWgODQiiBCRBvPgFBTiaazPAORMcaF8Hri8TRnCBaeRsLsINUhwVjkHRWfT0WylszHKzXnxx_gt2G0OOu1Ru9V9vAR7bpkdiAuRK1Cw5tPXNl1I5E3mJJ9X4r_V
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+of+the+Industry+Applications+Conference&rft.atitle=A+Novel+Intelligent+Intrusion+Detection+and+Prevention+Framework+for+Shore-Ship+Hybrid+AC%2FDC+Microgrids+Under+Power+Quality+Disturbances&rft.au=Ali%2C+Zulfiqar&rft.au=Hussain%2C+Tahir&rft.au=Su%2C+Chun-Lien&rft.au=Parise%2C+Giuseppe&rft.date=2025-06-15&rft.pub=IEEE&rft.eissn=2576-702X&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FIAS62731.2025.11061392&rft.externalDocID=11061392