Improved Multiple Disease Detection Using Modified ANFIS and K-Medoid Clustering

The present study focuses on the use of ML and DL methods to forecast the occurrence of common disorders in the area, including diabetes, allergies. Diabetic retinopathy (ADKD) and diabetic nephropathy (NDKD) are two major consequences of diabetes that researchers are also trying to quantify in thei...

Full description

Saved in:
Bibliographic Details
Published in2025 Global Conference in Emerging Technology (GINOTECH) pp. 1 - 6
Main Authors Chandanan, Amit Kumar, Kandepu, Sunitha, Giri, Neeraj, Somasundaram, B., Ravi, C. N., Lathigara, Amit
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.05.2025
Subjects
Online AccessGet full text
DOI10.1109/GINOTECH63460.2025.11076895

Cover

Loading…
Abstract The present study focuses on the use of ML and DL methods to forecast the occurrence of common disorders in the area, including diabetes, allergies. Diabetic retinopathy (ADKD) and diabetic nephropathy (NDKD) are two major consequences of diabetes that researchers are also trying to quantify in their study subjects. The previously processed information is queried for variables like illness name, indicators, medicine name, country, year, sex, and so on. Then, the Enclosed Frequent Item-set (CFI) count is determined. The CFI count's diversity is subsequently calculated. The disorders that are common in society can be recognized, at last, by using the M-ANFIS method. Clustered the CFI volatility of medical data is done using the M-ANFIS (Modified Adaptive Neuro-Fuzzy Inference System) technique using the k-Medoid clustered technique. The degree of accuracy achieved by the suggested strategy is 96.342%.
AbstractList The present study focuses on the use of ML and DL methods to forecast the occurrence of common disorders in the area, including diabetes, allergies. Diabetic retinopathy (ADKD) and diabetic nephropathy (NDKD) are two major consequences of diabetes that researchers are also trying to quantify in their study subjects. The previously processed information is queried for variables like illness name, indicators, medicine name, country, year, sex, and so on. Then, the Enclosed Frequent Item-set (CFI) count is determined. The CFI count's diversity is subsequently calculated. The disorders that are common in society can be recognized, at last, by using the M-ANFIS method. Clustered the CFI volatility of medical data is done using the M-ANFIS (Modified Adaptive Neuro-Fuzzy Inference System) technique using the k-Medoid clustered technique. The degree of accuracy achieved by the suggested strategy is 96.342%.
Author Chandanan, Amit Kumar
Ravi, C. N.
Kandepu, Sunitha
Lathigara, Amit
Giri, Neeraj
Somasundaram, B.
Author_xml – sequence: 1
  givenname: Amit Kumar
  surname: Chandanan
  fullname: Chandanan, Amit Kumar
  email: Chandanan.amit@ggu.ac.in
  organization: Guru Ghasidas Vishwavidyalaya (A Central University),Department of Computer Science and Engineering,Bilaspur
– sequence: 2
  givenname: Sunitha
  surname: Kandepu
  fullname: Kandepu, Sunitha
  email: sunitha.kandepu@gmail.com
  organization: Malineni Lakshmaiah Women's Engineering College,Department of IT,Guntur,Ap
– sequence: 3
  givenname: Neeraj
  surname: Giri
  fullname: Giri, Neeraj
  email: neeraj.research@iesuniversity.ac.in
  organization: IES Institute of Technology and Management, IES University,Department of Computer Science & Engineering,Bhopal,Madhya Pradesh,India,462044
– sequence: 4
  givenname: B.
  surname: Somasundaram
  fullname: Somasundaram, B.
  email: somu.b92@gmail.com
  organization: Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology,Department of Mathematics,Chennai,Tamil Nadu,India
– sequence: 5
  givenname: C. N.
  surname: Ravi
  fullname: Ravi, C. N.
  email: cnravi@cmrec.ac.in
  organization: CSE, CMR Engineering College,Hyderabad,India
– sequence: 6
  givenname: Amit
  surname: Lathigara
  fullname: Lathigara, Amit
  email: amit.lathigara@rku.ac.in
  organization: RK University,School of Engineering,Rajkot
BookMark eNo1j01Lw0AURUfQha39By4Guk6dmZeZ5C1L7EewaQXjukwyLzKQJiFJBf-9EXV14HLuhTtjt03bEGNLKVZSCnzapcdTvkn2BkIjVkoo_ZNHJkZ9wxYYYQwgtYgiGd-z1_TS9e0nOZ5d69F3NfFnP5AdJtJI5ejbhr8PvvngWet85Sdzfdymb9w2jr8EGbnWO57U12GkftIe2F1l64EWf5yzfLvJk31wOO3SZH0IPMIYOBVBZakobRyWRsoitqEKFZRCS3RUaahKadBK7ZwyKMFBCKJAnEoaHcKcPf7OeiI6d72_2P7r_P8TvgFcCE4K
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/GINOTECH63460.2025.11076895
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331507718
9798331507756
EndPage 6
ExternalDocumentID 11076895
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-d273faebca84c611b8a42423c0519def53fc169a15dd26913d3430b99fae59d93
IEDL.DBID RIE
IngestDate Wed Jul 23 05:50:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-d273faebca84c611b8a42423c0519def53fc169a15dd26913d3430b99fae59d93
PageCount 6
ParticipantIDs ieee_primary_11076895
PublicationCentury 2000
PublicationDate 2025-May-9
PublicationDateYYYYMMDD 2025-05-09
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-9
  day: 09
PublicationDecade 2020
PublicationTitle 2025 Global Conference in Emerging Technology (GINOTECH)
PublicationTitleAbbrev GINOTECH
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9107155
Snippet The present study focuses on the use of ML and DL methods to forecast the occurrence of common disorders in the area, including diabetes, allergies. Diabetic...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
ADKD
ANFIS
Biomedical imaging
CFCM
CFI
Deep learning
Global Positioning System
Insulin
IVP-SVM
LSE
M-ANFIS
Medical devices
Medical services
Metabolism
NDKD
Performance evaluation
Systematic literature review
Title Improved Multiple Disease Detection Using Modified ANFIS and K-Medoid Clustering
URI https://ieeexplore.ieee.org/document/11076895
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9uB_Gk4sRvAnpN1zZp1hxlH27K6sAJu400L4GhtCLtxb_eJO0UBcFLCCEh4T3I-8jv_YLQjb0VgRqqiG1DwoRxiaYcCIPYsXEJaaRHW2R8-szuV8mqLVb3tTBaaw8-04Hr-rd8KFXtUmV9F6vwVCQd1LGRW1OstYuuW97M_t0se1yOh1NOGQ9t6BcnwXbFj79TvOmY7KNsu2mDGHkJ6ioP1McvPsZ_n-oA9b6r9PDiy_4coh1dHKFFkyXQgOctVBCPmjcYPNKVx10V2OME8LyEjbEeKL7NJrMnLAvAD2Su7SUHePhaOwYFO62HlpPxcjgl7a8JZCNoRcD6I0Y6iFPKFI-iPJXM-UzK-WqgTUKNiriQUQIQcxFZVTEa5kLYRYkAQY9RtygLfYJwCErFMYAyg5ip0AjNmEzTROXaWvZocIp6Thrrt4YXY70VxNkf4-dozynFwwXFBepW77W-tCa9yq-8Kj8B9L-h9w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdgL626yXpmkfZxc6tdWAF30aak8BQOpH2xV9vknaKguBLCCEhIQfynZx85wtCN_pUhFCFwtGl5xCmTKCpAIdAYNS4GFfcsi2yKHki98_0uU1Wt7kwUkpLPpOuqdq3fFiJ2oTKeuauEsWMbqItDfzUb9K1ttF1q5zZu5tkD_lokEQhiTx9-Quoux7z4_cUCx7jPZStp204Iy9uXRWu-PilyPjvde2j7neeHp5_IdAB2pDlIZo3cQIJOG3JgnjYvMLgoaws86rElimA0xUslfZB8W02njxiXgKeOqnUxxzgwWttNBR0ty7Kx6N8kDjtvwnOkoWVA9ojUdyQnGIiIt8vYk6M1ySMtwZS0VAJP2LcpwBBxHxtLBJ6BWN6EGXAwiPUKVelPEbYAyGCAECofkCEp5gkhMcxFYXU2O73T1DX7MbirVHGWKw34vSP9iu0k-TpbDGbZNMztGsMZMmD7Bx1qvdaXmiAr4pLa9ZPmHOlQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+Global+Conference+in+Emerging+Technology+%28GINOTECH%29&rft.atitle=Improved+Multiple+Disease+Detection+Using+Modified+ANFIS+and+K-Medoid+Clustering&rft.au=Chandanan%2C+Amit+Kumar&rft.au=Kandepu%2C+Sunitha&rft.au=Giri%2C+Neeraj&rft.au=Somasundaram%2C+B.&rft.date=2025-05-09&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FGINOTECH63460.2025.11076895&rft.externalDocID=11076895