Efficient Disease Diagnosis Platform: Multi-Model Solution for Early Health Condition Detection
This paper presents a multi-disease prediction system that leverages machine learning to enable the early diagnosis of five conditions: diabetes, heart disease, Parkinson's, breast cancer, and pneumonia. Unlike single-disease models, this system integrates diverse diagnostic tasks into a unifie...
Saved in:
Published in | International Conference on Signal Processing and Communication (Online) pp. 363 - 368 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
20.02.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2643-444X |
DOI | 10.1109/ICSC64553.2025.10967730 |
Cover
Abstract | This paper presents a multi-disease prediction system that leverages machine learning to enable the early diagnosis of five conditions: diabetes, heart disease, Parkinson's, breast cancer, and pneumonia. Unlike single-disease models, this system integrates diverse diagnostic tasks into a unified framework, delivering high accuracy across multiple diseases. Classification algorithms Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, and XGBoostare employed to identify the optimal model for each condition, achieving up to 97.66% accuracy in breast cancer detection. For pneumonia, a 14-layer Convolutional Neural Network (CNN) is used to analyze chest X-ray images effectively. The systems single-user interface facilitates rapid, data-driven predictions, streamlining clinical workflows and supporting proactive disease management. |
---|---|
AbstractList | This paper presents a multi-disease prediction system that leverages machine learning to enable the early diagnosis of five conditions: diabetes, heart disease, Parkinson's, breast cancer, and pneumonia. Unlike single-disease models, this system integrates diverse diagnostic tasks into a unified framework, delivering high accuracy across multiple diseases. Classification algorithms Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, and XGBoostare employed to identify the optimal model for each condition, achieving up to 97.66% accuracy in breast cancer detection. For pneumonia, a 14-layer Convolutional Neural Network (CNN) is used to analyze chest X-ray images effectively. The systems single-user interface facilitates rapid, data-driven predictions, streamlining clinical workflows and supporting proactive disease management. |
Author | Beniwal, Ruby Nisha, K. Kalra, Shruti |
Author_xml | – sequence: 1 givenname: Ruby surname: Beniwal fullname: Beniwal, Ruby email: ruby.beniwal@jiit.ac.in organization: Jaypee Institute Of Information Technology,Department of Electronics and Communication,Noida,India – sequence: 2 givenname: Shruti surname: Kalra fullname: Kalra, Shruti email: shruti.kalra@jiit.ac.in organization: Jaypee Institute Of Information Technology,Department of Electronics and Communication,Noida,India – sequence: 3 givenname: K. surname: Nisha fullname: Nisha, K. email: k.nisha@jiit.ac.in organization: Jaypee Institute Of Information Technology,Department of Electronics and Communication,Noida,India |
BookMark | eNo1UM1KAzEYjKJgrX0DwbzA1mS_ZLPxJmu1hRaF9uCtpNkvGkk3skkPfXvXv9MMM8PAzCU562KHhNxwNuWc6dtFs24qISVMS1bK6SBVSgE7IROtdA3AJee1ZqdkVFYCCiHE6wWZpPTBGIOSgZJ8RLYz57z12GX64BOahAOaty4mn-hLMNnFfn9HV4eQfbGKLQa6juGQfezoYNGZ6cORztGE_E6b2LX-x3rAjPabXZFzZ0LCyR-OyeZxtmnmxfL5adHcLwuvIRcWeeXandastrK1plZGOsuAC6cYIgqltLCyrmookYMoAZkZJjol7M5KA2Ny_Vvrh_T2s_d70x-3_5fAF2AyWIw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICSC64553.2025.10967730 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331511890 |
EISSN | 2643-444X |
EndPage | 368 |
ExternalDocumentID | 10967730 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-ce16fdb9908c5dca87a5fc0314f70eee47794c586832e13423e0a833f74cbc5a3 |
IEDL.DBID | RIE |
IngestDate | Wed Apr 30 05:50:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-ce16fdb9908c5dca87a5fc0314f70eee47794c586832e13423e0a833f74cbc5a3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10967730 |
PublicationCentury | 2000 |
PublicationDate | 2025-Feb.-20 |
PublicationDateYYYYMMDD | 2025-02-20 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-Feb.-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Signal Processing and Communication (Online) |
PublicationTitleAbbrev | ICSC |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003203751 |
Score | 1.902346 |
Snippet | This paper presents a multi-disease prediction system that leverages machine learning to enable the early diagnosis of five conditions: diabetes, heart... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 363 |
SubjectTerms | Accuracy Breast cancer Classification algorithms Convolutional Neural Network (CNN) Convolutional neural networks Healthcare diagnostics Machine learning Multi-disease prediction Pneumonia Random forests Signal processing Streaming media Support vector machines X-ray imaging |
Title | Efficient Disease Diagnosis Platform: Multi-Model Solution for Early Health Condition Detection |
URI | https://ieeexplore.ieee.org/document/10967730 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVNTu2lW0p3dOhVrm2t7jULaaEh0BRyC7IkQ2hwSmtf-vUdyXG6QKEnG9vCskbDWKP33iB0I2yeKVpQklnGCSuMJDpVMZHCWENFzpqakY8TMX5mD3M-35DVAxfGORfAZy7yp2Ev365N7VNl4OGZkDAlO6gD86wha20TKjT15VyTDYYLHr297z_1BeOcwjIw5VHb-kcdlRBGRvto0nagQY-8RHWVR-bjlzbjv3t4gHpfjD083caiQ7TjyiO0901s8BgthkEtAtrjQbMrA8eAs1u-4-lKV_739Q4HRi7xJdJWuM2ZYbiFgxQybmhLGF5rA9gLD1wV0FxlD81Gw1l_TDblFcgyoxUxLhEFWCqLleHWaCU1L4xXsy9kDB_GJLiq4UqAz7vECwW6WCtKC8lMbrimJ6hbrkt3irBOTca0Vc7C6oTHSW6FdcZSzYWThRRnqOeHavHaCGgs2lE6_-P6Bdr1FgvM8fgSdau32l1B7K_y62DzT9-brx4 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnB1SOot4dpFLbRVJYrUW-TYjoSoUgTpha9n7DRlkZA4JUpixfFkNPb4vTcI3QiTJTHNKUkM44TlWhLVikMihTaaioxVNSNHY9F_YvczPluR1T0XxlrrwWc2cKd-L98s9NKlysDDEyHhl9xEWxD4Ga_oWuuUCm25gq7RCsUFD98O2o9twTinsBBs8aBu_6OSig8kvT00rrtQ4UdegmWZBfrjlzrjv_u4j5pfnD08WUejA7Rhi0O0-01u8AilXa8XAe1xp9qXgaNH2j2_48lclW4Ce4c9J5e4ImlzXGfNMNzCXgwZV8QlDK81Hu6FO7b0eK6iiaa97rTdJ6sCC-Q5oSXRNhI52CoJY82NVrFUPNdOzz6XIXwYk-CsmscCvN5GTirQhiqmNJdMZ5oreowaxaKwJwirlk6YMrE1sD7hYZQZYaw2VHFhZS7FKWq6oUpfKwmNtB6lsz-uX6Pt_nQ0TIeD8cM52nHW8zzy8AI1yrelvYSZQJldeft_AjjGsms |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+and+Communication+%28Online%29&rft.atitle=Efficient+Disease+Diagnosis+Platform%3A+Multi-Model+Solution+for+Early+Health+Condition+Detection&rft.au=Beniwal%2C+Ruby&rft.au=Kalra%2C+Shruti&rft.au=Nisha%2C+K.&rft.date=2025-02-20&rft.pub=IEEE&rft.eissn=2643-444X&rft.spage=363&rft.epage=368&rft_id=info:doi/10.1109%2FICSC64553.2025.10967730&rft.externalDocID=10967730 |