Efficient Disease Diagnosis Platform: Multi-Model Solution for Early Health Condition Detection

This paper presents a multi-disease prediction system that leverages machine learning to enable the early diagnosis of five conditions: diabetes, heart disease, Parkinson's, breast cancer, and pneumonia. Unlike single-disease models, this system integrates diverse diagnostic tasks into a unifie...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Signal Processing and Communication (Online) pp. 363 - 368
Main Authors Beniwal, Ruby, Kalra, Shruti, Nisha, K.
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.02.2025
Subjects
Online AccessGet full text
ISSN2643-444X
DOI10.1109/ICSC64553.2025.10967730

Cover

Abstract This paper presents a multi-disease prediction system that leverages machine learning to enable the early diagnosis of five conditions: diabetes, heart disease, Parkinson's, breast cancer, and pneumonia. Unlike single-disease models, this system integrates diverse diagnostic tasks into a unified framework, delivering high accuracy across multiple diseases. Classification algorithms Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, and XGBoostare employed to identify the optimal model for each condition, achieving up to 97.66% accuracy in breast cancer detection. For pneumonia, a 14-layer Convolutional Neural Network (CNN) is used to analyze chest X-ray images effectively. The systems single-user interface facilitates rapid, data-driven predictions, streamlining clinical workflows and supporting proactive disease management.
AbstractList This paper presents a multi-disease prediction system that leverages machine learning to enable the early diagnosis of five conditions: diabetes, heart disease, Parkinson's, breast cancer, and pneumonia. Unlike single-disease models, this system integrates diverse diagnostic tasks into a unified framework, delivering high accuracy across multiple diseases. Classification algorithms Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, and XGBoostare employed to identify the optimal model for each condition, achieving up to 97.66% accuracy in breast cancer detection. For pneumonia, a 14-layer Convolutional Neural Network (CNN) is used to analyze chest X-ray images effectively. The systems single-user interface facilitates rapid, data-driven predictions, streamlining clinical workflows and supporting proactive disease management.
Author Beniwal, Ruby
Nisha, K.
Kalra, Shruti
Author_xml – sequence: 1
  givenname: Ruby
  surname: Beniwal
  fullname: Beniwal, Ruby
  email: ruby.beniwal@jiit.ac.in
  organization: Jaypee Institute Of Information Technology,Department of Electronics and Communication,Noida,India
– sequence: 2
  givenname: Shruti
  surname: Kalra
  fullname: Kalra, Shruti
  email: shruti.kalra@jiit.ac.in
  organization: Jaypee Institute Of Information Technology,Department of Electronics and Communication,Noida,India
– sequence: 3
  givenname: K.
  surname: Nisha
  fullname: Nisha, K.
  email: k.nisha@jiit.ac.in
  organization: Jaypee Institute Of Information Technology,Department of Electronics and Communication,Noida,India
BookMark eNo1UM1KAzEYjKJgrX0DwbzA1mS_ZLPxJmu1hRaF9uCtpNkvGkk3skkPfXvXv9MMM8PAzCU562KHhNxwNuWc6dtFs24qISVMS1bK6SBVSgE7IROtdA3AJee1ZqdkVFYCCiHE6wWZpPTBGIOSgZJ8RLYz57z12GX64BOahAOaty4mn-hLMNnFfn9HV4eQfbGKLQa6juGQfezoYNGZ6cORztGE_E6b2LX-x3rAjPabXZFzZ0LCyR-OyeZxtmnmxfL5adHcLwuvIRcWeeXandastrK1plZGOsuAC6cYIgqltLCyrmookYMoAZkZJjol7M5KA2Ny_Vvrh_T2s_d70x-3_5fAF2AyWIw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICSC64553.2025.10967730
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331511890
EISSN 2643-444X
EndPage 368
ExternalDocumentID 10967730
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-ce16fdb9908c5dca87a5fc0314f70eee47794c586832e13423e0a833f74cbc5a3
IEDL.DBID RIE
IngestDate Wed Apr 30 05:50:38 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-ce16fdb9908c5dca87a5fc0314f70eee47794c586832e13423e0a833f74cbc5a3
PageCount 6
ParticipantIDs ieee_primary_10967730
PublicationCentury 2000
PublicationDate 2025-Feb.-20
PublicationDateYYYYMMDD 2025-02-20
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-Feb.-20
  day: 20
PublicationDecade 2020
PublicationTitle International Conference on Signal Processing and Communication (Online)
PublicationTitleAbbrev ICSC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203751
Score 1.902346
Snippet This paper presents a multi-disease prediction system that leverages machine learning to enable the early diagnosis of five conditions: diabetes, heart...
SourceID ieee
SourceType Publisher
StartPage 363
SubjectTerms Accuracy
Breast cancer
Classification algorithms
Convolutional Neural Network (CNN)
Convolutional neural networks
Healthcare diagnostics
Machine learning
Multi-disease prediction
Pneumonia
Random forests
Signal processing
Streaming media
Support vector machines
X-ray imaging
Title Efficient Disease Diagnosis Platform: Multi-Model Solution for Early Health Condition Detection
URI https://ieeexplore.ieee.org/document/10967730
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVNTu2lW0p3dOhVrm2t7jULaaEh0BRyC7IkQ2hwSmtf-vUdyXG6QKEnG9vCskbDWKP33iB0I2yeKVpQklnGCSuMJDpVMZHCWENFzpqakY8TMX5mD3M-35DVAxfGORfAZy7yp2Ev365N7VNl4OGZkDAlO6gD86wha20TKjT15VyTDYYLHr297z_1BeOcwjIw5VHb-kcdlRBGRvto0nagQY-8RHWVR-bjlzbjv3t4gHpfjD083caiQ7TjyiO0901s8BgthkEtAtrjQbMrA8eAs1u-4-lKV_739Q4HRi7xJdJWuM2ZYbiFgxQybmhLGF5rA9gLD1wV0FxlD81Gw1l_TDblFcgyoxUxLhEFWCqLleHWaCU1L4xXsy9kDB_GJLiq4UqAz7vECwW6WCtKC8lMbrimJ6hbrkt3irBOTca0Vc7C6oTHSW6FdcZSzYWThRRnqOeHavHaCGgs2lE6_-P6Bdr1FgvM8fgSdau32l1B7K_y62DzT9-brx4
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgHIALWxE7PnB1SOot4dpFLbRVJYrUW-TYjoSoUgTpha9n7DRlkZA4JUpixfFkNPb4vTcI3QiTJTHNKUkM44TlWhLVikMihTaaioxVNSNHY9F_YvczPluR1T0XxlrrwWc2cKd-L98s9NKlysDDEyHhl9xEWxD4Ga_oWuuUCm25gq7RCsUFD98O2o9twTinsBBs8aBu_6OSig8kvT00rrtQ4UdegmWZBfrjlzrjv_u4j5pfnD08WUejA7Rhi0O0-01u8AilXa8XAe1xp9qXgaNH2j2_48lclW4Ce4c9J5e4ImlzXGfNMNzCXgwZV8QlDK81Hu6FO7b0eK6iiaa97rTdJ6sCC-Q5oSXRNhI52CoJY82NVrFUPNdOzz6XIXwYk-CsmscCvN5GTirQhiqmNJdMZ5oreowaxaKwJwirlk6YMrE1sD7hYZQZYaw2VHFhZS7FKWq6oUpfKwmNtB6lsz-uX6Pt_nQ0TIeD8cM52nHW8zzy8AI1yrelvYSZQJldeft_AjjGsms
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Signal+Processing+and+Communication+%28Online%29&rft.atitle=Efficient+Disease+Diagnosis+Platform%3A+Multi-Model+Solution+for+Early+Health+Condition+Detection&rft.au=Beniwal%2C+Ruby&rft.au=Kalra%2C+Shruti&rft.au=Nisha%2C+K.&rft.date=2025-02-20&rft.pub=IEEE&rft.eissn=2643-444X&rft.spage=363&rft.epage=368&rft_id=info:doi/10.1109%2FICSC64553.2025.10967730&rft.externalDocID=10967730