Enhancing SplaTAM Performance Through Dynamic Learning Rate Decay and Optimized Keyframe Selection
Dense Simultaneous Localization and Mapping (SLAM) is crucial for robotics and augmented reality applications. In this paper, we optimized the SplaTAM using 3D Gaussian representations to achieve high-quality reconstruction using RGB-D cameras. We employ an online tracking and mapping system specifi...
Saved in:
Published in | IEEE International Conference on Robotics and Biomimetics (Online) pp. 1972 - 1977 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
10.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dense Simultaneous Localization and Mapping (SLAM) is crucial for robotics and augmented reality applications. In this paper, we optimized the SplaTAM using 3D Gaussian representations to achieve high-quality reconstruction using RGB-D cameras. We employ an online tracking and mapping system specifically designed to utilize the underlying Gaussian representations and optimization guided by silhouette rendering. Compared to the original SplaTAM approach, we introduce a dynamic learning rate decay strategy during the camera trajectory tracking phase for tracking. In the mapping phase, we introduce new constraints for selecting keyframes, ensuring that each keyframe contains richer scene information. Finally, we validate our experimental results on the Replica and TUM-RGBD datasets. Our method achieves 14.77% improvement in image rendering performance and 7.04 % improvement in depth rendering performance over the pre-improvement period, achieving highly competitive performance compared to existing methods. |
---|---|
AbstractList | Dense Simultaneous Localization and Mapping (SLAM) is crucial for robotics and augmented reality applications. In this paper, we optimized the SplaTAM using 3D Gaussian representations to achieve high-quality reconstruction using RGB-D cameras. We employ an online tracking and mapping system specifically designed to utilize the underlying Gaussian representations and optimization guided by silhouette rendering. Compared to the original SplaTAM approach, we introduce a dynamic learning rate decay strategy during the camera trajectory tracking phase for tracking. In the mapping phase, we introduce new constraints for selecting keyframes, ensuring that each keyframe contains richer scene information. Finally, we validate our experimental results on the Replica and TUM-RGBD datasets. Our method achieves 14.77% improvement in image rendering performance and 7.04 % improvement in depth rendering performance over the pre-improvement period, achieving highly competitive performance compared to existing methods. |
Author | Zhang, Liwei Shen, Shunxi Ma, Xingwang Wu, Xinzhao |
Author_xml | – sequence: 1 givenname: Xingwang surname: Ma fullname: Ma, Xingwang organization: School of Mechanical Engineering and Automation, Fuzhou University,Fuzhou,China – sequence: 2 givenname: Xinzhao surname: Wu fullname: Wu, Xinzhao organization: School of Mechanical Engineering and Automation, Fuzhou University,Fuzhou,China – sequence: 3 givenname: Liwei surname: Zhang fullname: Zhang, Liwei email: lw.zhang@fzu.edu.cn organization: School of Mechanical Engineering and Automation, Fuzhou University,Fuzhou,China – sequence: 4 givenname: Shunxi surname: Shen fullname: Shen, Shunxi organization: Fujian Yongyue Intelligent Technology Co., Ltd |
BookMark | eNo1kM1OwkAURkejiYi8gYt5gdY7f21niYBKxNRA92Q6vQNj6JQMdVGfXoy6OsnJybf4bslV6AISQhmkjIF-WJePyzKTIPOUA5fp2UEupbogE53rQgimQGdSXpIR11omQuXyhkxOpw8AEACaMzUi9SLsTbA-7OjmeDDV9I2-Y3RdbM8WabWP3eduT-dDMK23dIUmhp94bXqkc7RmoCY0tDz2vvVf2NBXHFw0LdINHtD2vgt35NqZwwknfxyT6mlRzV6SVfm8nE1XideiT6xlCDmTmnHNmOC2YJnLjGgKVNiYTDnHahSqbgojUdUGnFCCNwzAFQWCGJP731mPiNtj9K2Jw_b_FfENiq1ZdQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ROBIO64047.2024.10907445 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331509644 |
EISSN | 2994-3574 |
EndPage | 1977 |
ExternalDocumentID | 10907445 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i93t-cc1e071491291132c816f6a3d8e5eda65ff1be35bd8a4e5ba0f3532d100f88e03 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:46:52 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-cc1e071491291132c816f6a3d8e5eda65ff1be35bd8a4e5ba0f3532d100f88e03 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10907445 |
PublicationCentury | 2000 |
PublicationDate | 2024-Dec.-10 |
PublicationDateYYYYMMDD | 2024-12-10 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Conference on Robotics and Biomimetics (Online) |
PublicationTitleAbbrev | ROBIO |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003009215 |
Score | 1.8946406 |
Snippet | Dense Simultaneous Localization and Mapping (SLAM) is crucial for robotics and augmented reality applications. In this paper, we optimized the SplaTAM using 3D... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1972 |
SubjectTerms | Cameras Optimization Rendering (computer graphics) Robot vision systems Simultaneous localization and mapping Termination of employment Three-dimensional displays Training Trajectory tracking Visualization |
Title | Enhancing SplaTAM Performance Through Dynamic Learning Rate Decay and Optimized Keyframe Selection |
URI | https://ieeexplore.ieee.org/document/10907445 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG6Ek17cMO7pwesM02k7y1EF4hKWwJhwI13eIFEHYuAAv952hgE1MfHWNGnT9CV9fe23IHRjKgQiU0WcSDHfYZpyJw6ksvLaQsWeVJpb7nC7Ezy8sKchH67J6jkXBgBy8Bm4tpn_5eupWtinsroFEYaM8QqqmMqtIGttHlSolQ8ivETreHG937177AbMY6GpA33mlsN_GKnkeaS1jzrlCgr4yJu7mEtXrX6JM_57iQeotqXs4d4mGR2iHciO0N43tcFjJJvZq1XXyMZ4MHsXyW0b97a0AZwUjj24UXjU47Xy6hj3zXUUN0CJJRaZxl1zyHxMVqDxMyxTi-3Cg9xMx0S4hpJWM7l_cNYWC84kpnNHKQKWwRSbrG8t51VEgjQQVEfAQYuApymRQLnUkWDApfBSyqmvieelUQQePUHVbJrBKcKCAlE-lVwpZeaDmMShFoxCLEJfBfIM1exujWaFiMao3KjzP_ov0K4NmkWOEO8SVeefC7gy-X8ur_O4fwHzJbAe |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG4UD-rFDeNuD14HptN2mDmqYEDWwJhwI13eIFEHYuAAv952hkVNTLw1PTTNa9PX134LQnemQiAyVsQJFPMcpil3Ql8qK68tVOhKpbnlDjdbfvWFPfd5f0lWT7kwAJCCz6Bgm-lfvh6rmX0qK1oQYYkxvo12TOLnJKNrrZ9UqBUQInyF13HDYrf9UGv7zGUlUwl6rLAa4IeVSppJng5QazWHDEDyVphNZUEtfskz_nuShyi_Ie3hzjodHaEtSI7R_je9wRMkK8mr1ddIhrg3eRfRfRN3NsQBHGWePbicudTjpfbqEHfNhRSXQYk5FonGbXPMfIwWoHEd5rFFd-Feaqdj1jiPoqdK9Fh1liYLziikU0cpApbDFJq8b03nVUD82BdUB8BBC5_HMZFAudSBYMClcGPKqaeJ68ZBAC49RblknMAZwoICUR6VXCllxoOQhCUtGIVQlDzly3OUt9EaTDIZjcEqUBd_9N-i3WrUbAwatVb9Eu3ZBbQ4EuJeodz0cwbX5jYwlTfpHvgCUk2zZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Robotics+and+Biomimetics+%28Online%29&rft.atitle=Enhancing+SplaTAM+Performance+Through+Dynamic+Learning+Rate+Decay+and+Optimized+Keyframe+Selection&rft.au=Ma%2C+Xingwang&rft.au=Wu%2C+Xinzhao&rft.au=Zhang%2C+Liwei&rft.au=Shen%2C+Shunxi&rft.date=2024-12-10&rft.pub=IEEE&rft.eissn=2994-3574&rft.spage=1972&rft.epage=1977&rft_id=info:doi/10.1109%2FROBIO64047.2024.10907445&rft.externalDocID=10907445 |