Enhancing SplaTAM Performance Through Dynamic Learning Rate Decay and Optimized Keyframe Selection

Dense Simultaneous Localization and Mapping (SLAM) is crucial for robotics and augmented reality applications. In this paper, we optimized the SplaTAM using 3D Gaussian representations to achieve high-quality reconstruction using RGB-D cameras. We employ an online tracking and mapping system specifi...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Robotics and Biomimetics (Online) pp. 1972 - 1977
Main Authors Ma, Xingwang, Wu, Xinzhao, Zhang, Liwei, Shen, Shunxi
Format Conference Proceeding
LanguageEnglish
Published IEEE 10.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dense Simultaneous Localization and Mapping (SLAM) is crucial for robotics and augmented reality applications. In this paper, we optimized the SplaTAM using 3D Gaussian representations to achieve high-quality reconstruction using RGB-D cameras. We employ an online tracking and mapping system specifically designed to utilize the underlying Gaussian representations and optimization guided by silhouette rendering. Compared to the original SplaTAM approach, we introduce a dynamic learning rate decay strategy during the camera trajectory tracking phase for tracking. In the mapping phase, we introduce new constraints for selecting keyframes, ensuring that each keyframe contains richer scene information. Finally, we validate our experimental results on the Replica and TUM-RGBD datasets. Our method achieves 14.77% improvement in image rendering performance and 7.04 % improvement in depth rendering performance over the pre-improvement period, achieving highly competitive performance compared to existing methods.
AbstractList Dense Simultaneous Localization and Mapping (SLAM) is crucial for robotics and augmented reality applications. In this paper, we optimized the SplaTAM using 3D Gaussian representations to achieve high-quality reconstruction using RGB-D cameras. We employ an online tracking and mapping system specifically designed to utilize the underlying Gaussian representations and optimization guided by silhouette rendering. Compared to the original SplaTAM approach, we introduce a dynamic learning rate decay strategy during the camera trajectory tracking phase for tracking. In the mapping phase, we introduce new constraints for selecting keyframes, ensuring that each keyframe contains richer scene information. Finally, we validate our experimental results on the Replica and TUM-RGBD datasets. Our method achieves 14.77% improvement in image rendering performance and 7.04 % improvement in depth rendering performance over the pre-improvement period, achieving highly competitive performance compared to existing methods.
Author Zhang, Liwei
Shen, Shunxi
Ma, Xingwang
Wu, Xinzhao
Author_xml – sequence: 1
  givenname: Xingwang
  surname: Ma
  fullname: Ma, Xingwang
  organization: School of Mechanical Engineering and Automation, Fuzhou University,Fuzhou,China
– sequence: 2
  givenname: Xinzhao
  surname: Wu
  fullname: Wu, Xinzhao
  organization: School of Mechanical Engineering and Automation, Fuzhou University,Fuzhou,China
– sequence: 3
  givenname: Liwei
  surname: Zhang
  fullname: Zhang, Liwei
  email: lw.zhang@fzu.edu.cn
  organization: School of Mechanical Engineering and Automation, Fuzhou University,Fuzhou,China
– sequence: 4
  givenname: Shunxi
  surname: Shen
  fullname: Shen, Shunxi
  organization: Fujian Yongyue Intelligent Technology Co., Ltd
BookMark eNo1kM1OwkAURkejiYi8gYt5gdY7f21niYBKxNRA92Q6vQNj6JQMdVGfXoy6OsnJybf4bslV6AISQhmkjIF-WJePyzKTIPOUA5fp2UEupbogE53rQgimQGdSXpIR11omQuXyhkxOpw8AEACaMzUi9SLsTbA-7OjmeDDV9I2-Y3RdbM8WabWP3eduT-dDMK23dIUmhp94bXqkc7RmoCY0tDz2vvVf2NBXHFw0LdINHtD2vgt35NqZwwknfxyT6mlRzV6SVfm8nE1XideiT6xlCDmTmnHNmOC2YJnLjGgKVNiYTDnHahSqbgojUdUGnFCCNwzAFQWCGJP731mPiNtj9K2Jw_b_FfENiq1ZdQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ROBIO64047.2024.10907445
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331509644
EISSN 2994-3574
EndPage 1977
ExternalDocumentID 10907445
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i93t-cc1e071491291132c816f6a3d8e5eda65ff1be35bd8a4e5ba0f3532d100f88e03
IEDL.DBID RIE
IngestDate Wed Aug 27 01:46:52 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-cc1e071491291132c816f6a3d8e5eda65ff1be35bd8a4e5ba0f3532d100f88e03
PageCount 6
ParticipantIDs ieee_primary_10907445
PublicationCentury 2000
PublicationDate 2024-Dec.-10
PublicationDateYYYYMMDD 2024-12-10
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-10
  day: 10
PublicationDecade 2020
PublicationTitle IEEE International Conference on Robotics and Biomimetics (Online)
PublicationTitleAbbrev ROBIO
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003009215
Score 1.8946406
Snippet Dense Simultaneous Localization and Mapping (SLAM) is crucial for robotics and augmented reality applications. In this paper, we optimized the SplaTAM using 3D...
SourceID ieee
SourceType Publisher
StartPage 1972
SubjectTerms Cameras
Optimization
Rendering (computer graphics)
Robot vision systems
Simultaneous localization and mapping
Termination of employment
Three-dimensional displays
Training
Trajectory tracking
Visualization
Title Enhancing SplaTAM Performance Through Dynamic Learning Rate Decay and Optimized Keyframe Selection
URI https://ieeexplore.ieee.org/document/10907445
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG6Ek17cMO7pwesM02k7y1EF4hKWwJhwI13eIFEHYuAAv952hgE1MfHWNGnT9CV9fe23IHRjKgQiU0WcSDHfYZpyJw6ksvLaQsWeVJpb7nC7Ezy8sKchH67J6jkXBgBy8Bm4tpn_5eupWtinsroFEYaM8QqqmMqtIGttHlSolQ8ivETreHG937177AbMY6GpA33mlsN_GKnkeaS1jzrlCgr4yJu7mEtXrX6JM_57iQeotqXs4d4mGR2iHciO0N43tcFjJJvZq1XXyMZ4MHsXyW0b97a0AZwUjj24UXjU47Xy6hj3zXUUN0CJJRaZxl1zyHxMVqDxMyxTi-3Cg9xMx0S4hpJWM7l_cNYWC84kpnNHKQKWwRSbrG8t51VEgjQQVEfAQYuApymRQLnUkWDApfBSyqmvieelUQQePUHVbJrBKcKCAlE-lVwpZeaDmMShFoxCLEJfBfIM1exujWaFiMao3KjzP_ov0K4NmkWOEO8SVeefC7gy-X8ur_O4fwHzJbAe
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG4UD-rFDeNuD14HptN2mDmqYEDWwJhwI13eIFEHYuAAv952hkVNTLw1PTTNa9PX134LQnemQiAyVsQJFPMcpil3Ql8qK68tVOhKpbnlDjdbfvWFPfd5f0lWT7kwAJCCz6Bgm-lfvh6rmX0qK1oQYYkxvo12TOLnJKNrrZ9UqBUQInyF13HDYrf9UGv7zGUlUwl6rLAa4IeVSppJng5QazWHDEDyVphNZUEtfskz_nuShyi_Ie3hzjodHaEtSI7R_je9wRMkK8mr1ddIhrg3eRfRfRN3NsQBHGWePbicudTjpfbqEHfNhRSXQYk5FonGbXPMfIwWoHEd5rFFd-Feaqdj1jiPoqdK9Fh1liYLziikU0cpApbDFJq8b03nVUD82BdUB8BBC5_HMZFAudSBYMClcGPKqaeJ68ZBAC49RblknMAZwoICUR6VXCllxoOQhCUtGIVQlDzly3OUt9EaTDIZjcEqUBd_9N-i3WrUbAwatVb9Eu3ZBbQ4EuJeodz0cwbX5jYwlTfpHvgCUk2zZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Robotics+and+Biomimetics+%28Online%29&rft.atitle=Enhancing+SplaTAM+Performance+Through+Dynamic+Learning+Rate+Decay+and+Optimized+Keyframe+Selection&rft.au=Ma%2C+Xingwang&rft.au=Wu%2C+Xinzhao&rft.au=Zhang%2C+Liwei&rft.au=Shen%2C+Shunxi&rft.date=2024-12-10&rft.pub=IEEE&rft.eissn=2994-3574&rft.spage=1972&rft.epage=1977&rft_id=info:doi/10.1109%2FROBIO64047.2024.10907445&rft.externalDocID=10907445