MAGIKA: AI-Powered Content-Type Detection

The task of content-type detection-which entails identifying the data encoded in an arbitrary byte sequence-is critical for operating systems, development, reverse engineering environments, and a variety of security applications. In this paper, we introduce Magika, a novel AI-powered content-type de...

Full description

Saved in:
Bibliographic Details
Published inProceedings / International Conference on Software Engineering pp. 2638 - 2649
Main Authors Fratantonio, Yanick, Invernizzi, Luca, Farah, Loua, Thomas, Kurt, Zhang, Marina, Albertini, Ange, Galilee, Francois, Metitieri, Giancarlo, Cretin, Julien, Petit-Bianco, Alex, Tao, David, Bursztein, Elie
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.04.2025
Subjects
Online AccessGet full text
ISSN1558-1225
DOI10.1109/ICSE55347.2025.00158

Cover

Loading…
Abstract The task of content-type detection-which entails identifying the data encoded in an arbitrary byte sequence-is critical for operating systems, development, reverse engineering environments, and a variety of security applications. In this paper, we introduce Magika, a novel AI-powered content-type detection tool. Under the hood, Magika employs a deep learning model that can execute on a single CPU with just 1MB of memory to store the model's weights. We show that Magika achieves an average F1 score of 99% across over a hundred content types and a test set of more than 1M files, outperforming all existing content-type detection tools today. To foster adoption and improvements, we open source Magika under an Apache 2 license on GitHub and we make our model and training pipeline publicly available. Our tool has already seen adoption by Gmail and Google Drive for attachment scanning, by VirusTotal to aid with malware analysis, and by prominent open-source projects such as Apache Tika. While this paper focuses on the initial version, Magika continues to evolve with support for over 200 content types now available. The latest developments can be found at https://github.com/google/magika.
AbstractList The task of content-type detection-which entails identifying the data encoded in an arbitrary byte sequence-is critical for operating systems, development, reverse engineering environments, and a variety of security applications. In this paper, we introduce Magika, a novel AI-powered content-type detection tool. Under the hood, Magika employs a deep learning model that can execute on a single CPU with just 1MB of memory to store the model's weights. We show that Magika achieves an average F1 score of 99% across over a hundred content types and a test set of more than 1M files, outperforming all existing content-type detection tools today. To foster adoption and improvements, we open source Magika under an Apache 2 license on GitHub and we make our model and training pipeline publicly available. Our tool has already seen adoption by Gmail and Google Drive for attachment scanning, by VirusTotal to aid with malware analysis, and by prominent open-source projects such as Apache Tika. While this paper focuses on the initial version, Magika continues to evolve with support for over 200 content types now available. The latest developments can be found at https://github.com/google/magika.
Author Cretin, Julien
Fratantonio, Yanick
Galilee, Francois
Metitieri, Giancarlo
Invernizzi, Luca
Zhang, Marina
Bursztein, Elie
Petit-Bianco, Alex
Thomas, Kurt
Farah, Loua
Tao, David
Albertini, Ange
Author_xml – sequence: 1
  givenname: Yanick
  surname: Fratantonio
  fullname: Fratantonio, Yanick
  organization: Google
– sequence: 2
  givenname: Luca
  surname: Invernizzi
  fullname: Invernizzi, Luca
  organization: Google
– sequence: 3
  givenname: Loua
  surname: Farah
  fullname: Farah, Loua
  organization: Google
– sequence: 4
  givenname: Kurt
  surname: Thomas
  fullname: Thomas, Kurt
  organization: Google
– sequence: 5
  givenname: Marina
  surname: Zhang
  fullname: Zhang, Marina
  organization: Google
– sequence: 6
  givenname: Ange
  surname: Albertini
  fullname: Albertini, Ange
  organization: Google
– sequence: 7
  givenname: Francois
  surname: Galilee
  fullname: Galilee, Francois
  organization: Google
– sequence: 8
  givenname: Giancarlo
  surname: Metitieri
  fullname: Metitieri, Giancarlo
  organization: Google
– sequence: 9
  givenname: Julien
  surname: Cretin
  fullname: Cretin, Julien
  organization: Google
– sequence: 10
  givenname: Alex
  surname: Petit-Bianco
  fullname: Petit-Bianco, Alex
  organization: Google
– sequence: 11
  givenname: David
  surname: Tao
  fullname: Tao, David
  organization: Google
– sequence: 12
  givenname: Elie
  surname: Bursztein
  fullname: Bursztein, Elie
  organization: Google
BookMark eNotj8FKw0AUAFdRsK39gx5y9bD17dt9SdZbiLUGKwrmXja7byGiSUkC0r83oKeBOQzMUlx1fcdCbBRslQJ7X5UfOyJtsi0C0hZAUX4h1jazudaKgFKrLsVCEeVSIdKNWI7jJwCkxtqFuHst9tVL8ZAUlXzvf3jgkJR9N3E3yfp84uSRJ_ZT23e34jq6r5HX_1yJ-mlXl8_y8LavyuIgW6sn6RvtGoRgyWjAzGHKvoneuDT6wMbETEUMOUY0NqQhaJy10wgN-cw40Cux-cu2zHw8De23G87HeRVtPh_9AhO7QtU
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
ESBDL
RIE
RIO
DOI 10.1109/ICSE55347.2025.00158
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Open Access Journals
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331505691
EISSN 1558-1225
EndPage 2649
ExternalDocumentID 11029883
Genre orig-research
GroupedDBID -~X
.4S
.DC
29O
5VS
6IE
6IF
6IH
6IK
6IL
6IM
6IN
8US
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVWKF
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
EDO
ESBDL
FEDTE
I-F
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i93t-cb3ab20d9543027a26ecbfc4a6fcde44f71f2d82f249d6dd32cdea320b5c74a03
IEDL.DBID RIE
IngestDate Wed Aug 27 01:40:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-cb3ab20d9543027a26ecbfc4a6fcde44f71f2d82f249d6dd32cdea320b5c74a03
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11029883
PageCount 12
ParticipantIDs ieee_primary_11029883
PublicationCentury 2000
PublicationDate 2025-April-26
PublicationDateYYYYMMDD 2025-04-26
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-26
  day: 26
PublicationDecade 2020
PublicationTitle Proceedings / International Conference on Software Engineering
PublicationTitleAbbrev ICSE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0006499
Score 2.2904491
Snippet The task of content-type detection-which entails identifying the data encoded in an arbitrary byte sequence-is critical for operating systems, development,...
SourceID ieee
SourceType Publisher
StartPage 2638
SubjectTerms Deep learning
Internet
Licenses
Operating systems
Pipelines
Reverse engineering
Security
Software development management
Software engineering
Training
Title MAGIKA: AI-Powered Content-Type Detection
URI https://ieeexplore.ieee.org/document/11029883
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA62J091qbgzBy8e0mabzIy3UltbpaVghd5KlhcQYSoyvfjrTdJpFUHwEsK7ZCN5ecv3PoRuUqEJtbrAVHGNBQeFNfhGKgOEKP_jiNHzyVSOXsTjIl3UYPWIhQGAmHwGndCNsXy7MuvgKut6VcWKPOcN1PCW2wastXt2pf-719g4SoruuP88SFMuMm8DsuA3oYHV_QeDSlQgwxaabofe5I28ddaV7pjPX1UZ_z23A9T-xuols50WOkR7UB6h1pasIanv7jG6nfQexk-9u6Q3xrNAjQY2iaWpygoHYzS5hyqmZZVtNB8O5v0RrnkS8GvBK2w0V5oRW6QiBCEVk2C0M0JJZywI4TLqmM2Z85aWldZy5sWKM6JTkwlF-AlqlqsSTlEirHKFVE5T6QTNpLJO5KSAwEjujKFnqB1WvnzfVMJYbhd9_of8Au2H3Q_RFyYvUbP6WMOVV-KVvo6H9wWciJvR
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5aD3qqS8XdOXjxkDbbZGa8ldrasQsFK_RWskIRpiLTi7_eJJ1WEQQvIeSShJB87-W9730A3MVMIqxlBrGgEjJqBJTGNVwog5BwFkeIno_GvP_KnmfxrCKrBy6MMSYkn5mm74ZYvl6qlf8qazmoIlma0l2w54A_xmu61vbh5c56r9hxGGWtvPPSjWPKEucFEv9zgr2u-w8NlQAhvToYbyZfZ468NVelbKrPX3UZ_726Q9D4ZutFky0OHYEdUxyD-kauIapu7wm4H7Wf8kH7IWrncOLF0YyOQnGqooTeHY0eTRkSs4oGmPa6004fVkoJcJHREipJhSRIZzHzYUhBuFHSKia4VdowZhNsiU6Jdb6W5lpT4oYFJUjGKmEC0VNQK5aFOQMR08JmXFiJuWU44UJblqLMeE1yqxQ-Bw2_8_n7uhbGfLPpiz_Gb8F-fzoazof5eHAJDvxJ-FgM4VegVn6szLWD9FLehIP8AvJdnxo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=MAGIKA%3A+AI-Powered+Content-Type+Detection&rft.au=Fratantonio%2C+Yanick&rft.au=Invernizzi%2C+Luca&rft.au=Farah%2C+Loua&rft.au=Thomas%2C+Kurt&rft.date=2025-04-26&rft.pub=IEEE&rft.eissn=1558-1225&rft.spage=2638&rft.epage=2649&rft_id=info:doi/10.1109%2FICSE55347.2025.00158&rft.externalDocID=11029883