MAGIKA: AI-Powered Content-Type Detection
The task of content-type detection-which entails identifying the data encoded in an arbitrary byte sequence-is critical for operating systems, development, reverse engineering environments, and a variety of security applications. In this paper, we introduce Magika, a novel AI-powered content-type de...
Saved in:
Published in | Proceedings / International Conference on Software Engineering pp. 2638 - 2649 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
26.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1558-1225 |
DOI | 10.1109/ICSE55347.2025.00158 |
Cover
Loading…
Abstract | The task of content-type detection-which entails identifying the data encoded in an arbitrary byte sequence-is critical for operating systems, development, reverse engineering environments, and a variety of security applications. In this paper, we introduce Magika, a novel AI-powered content-type detection tool. Under the hood, Magika employs a deep learning model that can execute on a single CPU with just 1MB of memory to store the model's weights. We show that Magika achieves an average F1 score of 99% across over a hundred content types and a test set of more than 1M files, outperforming all existing content-type detection tools today. To foster adoption and improvements, we open source Magika under an Apache 2 license on GitHub and we make our model and training pipeline publicly available. Our tool has already seen adoption by Gmail and Google Drive for attachment scanning, by VirusTotal to aid with malware analysis, and by prominent open-source projects such as Apache Tika. While this paper focuses on the initial version, Magika continues to evolve with support for over 200 content types now available. The latest developments can be found at https://github.com/google/magika. |
---|---|
AbstractList | The task of content-type detection-which entails identifying the data encoded in an arbitrary byte sequence-is critical for operating systems, development, reverse engineering environments, and a variety of security applications. In this paper, we introduce Magika, a novel AI-powered content-type detection tool. Under the hood, Magika employs a deep learning model that can execute on a single CPU with just 1MB of memory to store the model's weights. We show that Magika achieves an average F1 score of 99% across over a hundred content types and a test set of more than 1M files, outperforming all existing content-type detection tools today. To foster adoption and improvements, we open source Magika under an Apache 2 license on GitHub and we make our model and training pipeline publicly available. Our tool has already seen adoption by Gmail and Google Drive for attachment scanning, by VirusTotal to aid with malware analysis, and by prominent open-source projects such as Apache Tika. While this paper focuses on the initial version, Magika continues to evolve with support for over 200 content types now available. The latest developments can be found at https://github.com/google/magika. |
Author | Cretin, Julien Fratantonio, Yanick Galilee, Francois Metitieri, Giancarlo Invernizzi, Luca Zhang, Marina Bursztein, Elie Petit-Bianco, Alex Thomas, Kurt Farah, Loua Tao, David Albertini, Ange |
Author_xml | – sequence: 1 givenname: Yanick surname: Fratantonio fullname: Fratantonio, Yanick organization: Google – sequence: 2 givenname: Luca surname: Invernizzi fullname: Invernizzi, Luca organization: Google – sequence: 3 givenname: Loua surname: Farah fullname: Farah, Loua organization: Google – sequence: 4 givenname: Kurt surname: Thomas fullname: Thomas, Kurt organization: Google – sequence: 5 givenname: Marina surname: Zhang fullname: Zhang, Marina organization: Google – sequence: 6 givenname: Ange surname: Albertini fullname: Albertini, Ange organization: Google – sequence: 7 givenname: Francois surname: Galilee fullname: Galilee, Francois organization: Google – sequence: 8 givenname: Giancarlo surname: Metitieri fullname: Metitieri, Giancarlo organization: Google – sequence: 9 givenname: Julien surname: Cretin fullname: Cretin, Julien organization: Google – sequence: 10 givenname: Alex surname: Petit-Bianco fullname: Petit-Bianco, Alex organization: Google – sequence: 11 givenname: David surname: Tao fullname: Tao, David organization: Google – sequence: 12 givenname: Elie surname: Bursztein fullname: Bursztein, Elie organization: Google |
BookMark | eNotj8FKw0AUAFdRsK39gx5y9bD17dt9SdZbiLUGKwrmXja7byGiSUkC0r83oKeBOQzMUlx1fcdCbBRslQJ7X5UfOyJtsi0C0hZAUX4h1jazudaKgFKrLsVCEeVSIdKNWI7jJwCkxtqFuHst9tVL8ZAUlXzvf3jgkJR9N3E3yfp84uSRJ_ZT23e34jq6r5HX_1yJ-mlXl8_y8LavyuIgW6sn6RvtGoRgyWjAzGHKvoneuDT6wMbETEUMOUY0NqQhaJy10wgN-cw40Cux-cu2zHw8De23G87HeRVtPh_9AhO7QtU |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK ESBDL RIE RIO |
DOI | 10.1109/ICSE55347.2025.00158 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Open Access Journals IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798331505691 |
EISSN | 1558-1225 |
EndPage | 2649 |
ExternalDocumentID | 11029883 |
Genre | orig-research |
GroupedDBID | -~X .4S .DC 29O 5VS 6IE 6IF 6IH 6IK 6IL 6IM 6IN 8US AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS ARCSS AVWKF BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO EDO ESBDL FEDTE I-F IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i93t-cb3ab20d9543027a26ecbfc4a6fcde44f71f2d82f249d6dd32cdea320b5c74a03 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:40:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-cb3ab20d9543027a26ecbfc4a6fcde44f71f2d82f249d6dd32cdea320b5c74a03 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/11029883 |
PageCount | 12 |
ParticipantIDs | ieee_primary_11029883 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-26 |
PublicationDateYYYYMMDD | 2025-04-26 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings / International Conference on Software Engineering |
PublicationTitleAbbrev | ICSE |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0006499 |
Score | 2.2904491 |
Snippet | The task of content-type detection-which entails identifying the data encoded in an arbitrary byte sequence-is critical for operating systems, development,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 2638 |
SubjectTerms | Deep learning Internet Licenses Operating systems Pipelines Reverse engineering Security Software development management Software engineering Training |
Title | MAGIKA: AI-Powered Content-Type Detection |
URI | https://ieeexplore.ieee.org/document/11029883 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA62J091qbgzBy8e0mabzIy3UltbpaVghd5KlhcQYSoyvfjrTdJpFUHwEsK7ZCN5ecv3PoRuUqEJtbrAVHGNBQeFNfhGKgOEKP_jiNHzyVSOXsTjIl3UYPWIhQGAmHwGndCNsXy7MuvgKut6VcWKPOcN1PCW2wastXt2pf-719g4SoruuP88SFMuMm8DsuA3oYHV_QeDSlQgwxaabofe5I28ddaV7pjPX1UZ_z23A9T-xuols50WOkR7UB6h1pasIanv7jG6nfQexk-9u6Q3xrNAjQY2iaWpygoHYzS5hyqmZZVtNB8O5v0RrnkS8GvBK2w0V5oRW6QiBCEVk2C0M0JJZywI4TLqmM2Z85aWldZy5sWKM6JTkwlF-AlqlqsSTlEirHKFVE5T6QTNpLJO5KSAwEjujKFnqB1WvnzfVMJYbhd9_of8Au2H3Q_RFyYvUbP6WMOVV-KVvo6H9wWciJvR |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5aD3qqS8XdOXjxkDbbZGa8ldrasQsFK_RWskIRpiLTi7_eJJ1WEQQvIeSShJB87-W9730A3MVMIqxlBrGgEjJqBJTGNVwog5BwFkeIno_GvP_KnmfxrCKrBy6MMSYkn5mm74ZYvl6qlf8qazmoIlma0l2w54A_xmu61vbh5c56r9hxGGWtvPPSjWPKEucFEv9zgr2u-w8NlQAhvToYbyZfZ468NVelbKrPX3UZ_726Q9D4ZutFky0OHYEdUxyD-kauIapu7wm4H7Wf8kH7IWrncOLF0YyOQnGqooTeHY0eTRkSs4oGmPa6004fVkoJcJHREipJhSRIZzHzYUhBuFHSKia4VdowZhNsiU6Jdb6W5lpT4oYFJUjGKmEC0VNQK5aFOQMR08JmXFiJuWU44UJblqLMeE1yqxQ-Bw2_8_n7uhbGfLPpiz_Gb8F-fzoazof5eHAJDvxJ-FgM4VegVn6szLWD9FLehIP8AvJdnxo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+International+Conference+on+Software+Engineering&rft.atitle=MAGIKA%3A+AI-Powered+Content-Type+Detection&rft.au=Fratantonio%2C+Yanick&rft.au=Invernizzi%2C+Luca&rft.au=Farah%2C+Loua&rft.au=Thomas%2C+Kurt&rft.date=2025-04-26&rft.pub=IEEE&rft.eissn=1558-1225&rft.spage=2638&rft.epage=2649&rft_id=info:doi/10.1109%2FICSE55347.2025.00158&rft.externalDocID=11029883 |