Intra-Subject Clustering of ECG Heartbeats from Wearable Devices Using Deep Learning and Feature Engineering

Cardiovascular diseases (CVDs) represent a significant global health concern, necessitating effective early detection methods. The advent of wearable electrocardiogram (ECG) devices offers the potential for enhanced portability and continuous monitoring. However, the substantial volume of data gener...

Full description

Saved in:
Bibliographic Details
Published inProceedings / IEEE International Symposium on Computer-Based Medical Systems pp. 57 - 64
Main Authors Digiacomo, Federico, Olmo, Gabriella, Gumiero, Alessandro
Format Conference Proceeding
LanguageEnglish
Published IEEE 18.06.2025
Subjects
Online AccessGet full text
ISSN2372-9198
DOI10.1109/CBMS65348.2025.00021

Cover

Abstract Cardiovascular diseases (CVDs) represent a significant global health concern, necessitating effective early detection methods. The advent of wearable electrocardiogram (ECG) devices offers the potential for enhanced portability and continuous monitoring. However, the substantial volume of data generated underscores the need for automated analysis techniques. This paper presents a framework for intra-subject clustering of ECG heartbeats, employing a robust P-QRS-T wave classifier based on a Multiscale Convolutional Neural Network (Multiscale CNN) combined with a Bidirectional Gated Recurrent Unit (biGRU). This is followed by heartbeat segmentation, feature engineering using both manual descriptors and the Time Series Feature Extraction Library (TSFEL), and subsequent clustering via a k-means algorithm. Furthermore, a novel ECG database, the Hi Database (HiDB), is introduced. It was acquired using the Hi 3-Leads ECG (Hi-ECG), a wearable three-lead device commercialised by CGM in collaboration with STMicroelectronics. The proposed wave classifier demonstrated strong performance, tested according to the ANSI/AAMI EC57 standard. It achieved an average sensitivity of 97.79 % and precision of 96 % for QRS detection across the MIT-BIH Arrhythmia Database (MITDB), the American Heart Association ECG Database (AHADB), and the MIT-BIH Noise Stress Test Database (NSTDB). Intra-subject clustering on the MITDB yielded a mean Adjusted Rand Index (ARI) of 0.78 \pm 0.19 and a mean Silhouette score of 0.65 \pm 0.14 . Application of the clustering approach to the HiDB resulted in an average Silhouette score of 0.74 \pm 0.13 . The findings suggest that the presented framework can support clinicians in ECG beat annotation tasks. Its modular design enables adaptability to additional objectives, such as rhythm anomaly detection, by leveraging QRS information from the wave classifier. Both the wave classifier and the feature-based clustering model demonstrated the robustness of the approach across different ECG data sources. Moreover, the intra-subject setting highlights its potential for personalised cardiac monitoring.
AbstractList Cardiovascular diseases (CVDs) represent a significant global health concern, necessitating effective early detection methods. The advent of wearable electrocardiogram (ECG) devices offers the potential for enhanced portability and continuous monitoring. However, the substantial volume of data generated underscores the need for automated analysis techniques. This paper presents a framework for intra-subject clustering of ECG heartbeats, employing a robust P-QRS-T wave classifier based on a Multiscale Convolutional Neural Network (Multiscale CNN) combined with a Bidirectional Gated Recurrent Unit (biGRU). This is followed by heartbeat segmentation, feature engineering using both manual descriptors and the Time Series Feature Extraction Library (TSFEL), and subsequent clustering via a k-means algorithm. Furthermore, a novel ECG database, the Hi Database (HiDB), is introduced. It was acquired using the Hi 3-Leads ECG (Hi-ECG), a wearable three-lead device commercialised by CGM in collaboration with STMicroelectronics. The proposed wave classifier demonstrated strong performance, tested according to the ANSI/AAMI EC57 standard. It achieved an average sensitivity of 97.79 % and precision of 96 % for QRS detection across the MIT-BIH Arrhythmia Database (MITDB), the American Heart Association ECG Database (AHADB), and the MIT-BIH Noise Stress Test Database (NSTDB). Intra-subject clustering on the MITDB yielded a mean Adjusted Rand Index (ARI) of 0.78 \pm 0.19 and a mean Silhouette score of 0.65 \pm 0.14 . Application of the clustering approach to the HiDB resulted in an average Silhouette score of 0.74 \pm 0.13 . The findings suggest that the presented framework can support clinicians in ECG beat annotation tasks. Its modular design enables adaptability to additional objectives, such as rhythm anomaly detection, by leveraging QRS information from the wave classifier. Both the wave classifier and the feature-based clustering model demonstrated the robustness of the approach across different ECG data sources. Moreover, the intra-subject setting highlights its potential for personalised cardiac monitoring.
Author Digiacomo, Federico
Gumiero, Alessandro
Olmo, Gabriella
Author_xml – sequence: 1
  givenname: Federico
  surname: Digiacomo
  fullname: Digiacomo, Federico
  email: federico.digiacomo@polito.it
  organization: Politecnico di Torino,Turin,Italy
– sequence: 2
  givenname: Gabriella
  surname: Olmo
  fullname: Olmo, Gabriella
  email: gabriella.olmo@polito.it
  organization: Politecnico di Torino,Turin,Italy
– sequence: 3
  givenname: Alessandro
  surname: Gumiero
  fullname: Gumiero, Alessandro
  email: alessandro.gumiero@st.com
  organization: STMicroelectronics,Agrate Brianza,Italy
BookMark eNotkM9OAjEYxKvRREDegENfYLF_trvtURcQEowHMB7J1_ZbsmQppF1MfHsX9TSZ_GbmMENyF04BCZlwNuWcmafq5W1TKJnrqWBCTRljgt-QsSmNlpIrUXCmb8lAyFJkhhv9QIYpHRhTPVQD0q5CFyHbXOwBXUer9pI6jE3Y01NN59UrXSLEziJ0idbxdKSfvQfbIp3hV-Mw0Y90Tc8Qz3Tds3B1EDxd9J1LRDoP-ybg7-Yjua-hTTj-1xHZLubbapmt319X1fM6a4zsMmeE8rXXqpZecCtz60pZOPA61xw0ApMO86IA7UXJrPIFB2lFD11eKhByRCZ_sw0i7s6xOUL83vVvKV0aIX8AahJbLg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CBMS65348.2025.00021
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISBN 9798331526108
EISSN 2372-9198
EndPage 64
ExternalDocumentID 11058792
Genre orig-research
GroupedDBID 29F
6IE
6IH
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i93t-c925dfd85f3d21b34bc736cad8481a8ea03ce466a8d270b5d61a3b2481c475a23
IEDL.DBID RIE
IngestDate Thu Jul 10 06:33:52 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-c925dfd85f3d21b34bc736cad8481a8ea03ce466a8d270b5d61a3b2481c475a23
PageCount 8
ParticipantIDs ieee_primary_11058792
PublicationCentury 2000
PublicationDate 2025-June-18
PublicationDateYYYYMMDD 2025-06-18
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-18
  day: 18
PublicationDecade 2020
PublicationTitle Proceedings / IEEE International Symposium on Computer-Based Medical Systems
PublicationTitleAbbrev CBMS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0053155
Score 2.2942421
Snippet Cardiovascular diseases (CVDs) represent a significant global health concern, necessitating effective early detection methods. The advent of wearable...
SourceID ieee
SourceType Publisher
StartPage 57
SubjectTerms Cardiovascular diseases (CVDs)
Clustering
Data models
Electrocardiography
Feature extraction
Heart beat
Heart rate variability
Heartbeat Anomalies
Machine learning
Morphology
Pipelines
Recording
Unsupervised Learning
Wearable devices
Wearable ECG device
Title Intra-Subject Clustering of ECG Heartbeats from Wearable Devices Using Deep Learning and Feature Engineering
URI https://ieeexplore.ieee.org/document/11058792
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60B_Hkq-KbPXhNm2Szj1yNrVVoEazYW9mniCUtNbn4653dploEwVs2WdiwO5nJzH7ftwhdKxOnknAXSe4gQXE8joRykKxAfp3FmSVaeO7wcMQGz9nDhE4asnrgwlhrA_jMdvxl2Ms3c137UlkXQhUVPAePuw12tiJrrd0u2BKlDTcuifNucTN8YpQE-Fbq6yaxlwPdOEElBJD-Hhqth17hRt47daU6-vOXKuO_320ftX-4evjxOwodoC1bHqKdYbNlfoRm9758G4GD8BUXXMxqL40AXfHc4V5xhwdg65UCl_yBPdcEv0Db86nwrQ1eBAdUAbTsAjdqrK9Ylgb7v8d6afGGpGEbjfu9cTGImiMWorecVJHOU2qcEdQRkyaKZEpzwrQ0XmRfCitjom3GmBQm5bGihiWSqBQe6oxTmZJj1CrnpT3xEClGCLcycfCFO5XIXFBDmMxdrqk05BS1_aRNFysRjel6vs7-uH-Odv3CeVRWIi5Qq1rW9hLif6Wuwrp_AW7AsCA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA4yQX3yNvFuHnzt1jbNpa_WzU3XIThxbyNXEUc3ZvvirzfJOh2C4FvTFhLS03NyTr7vCwDXQoUxR9QEnBqboBgaBkwYm6zY_DoJE40kc9zhfEh6z8n9GI9rsrrnwmitPfhMt9yl38tXM1m5UlnbhirMaGo97qYN_Ale0rVWjtdaE8Y1Oy4K03Z2kz8RjDyAK3aVk9AJgq6doeJDSHcXDFedL5Ej762qFC35-UuX8d-j2wPNH7YefPyOQ_tgQxcHYCuvN80PwbTvCriBdRGu5gKzaeXEEeyrcGZgJ7uDPWvtpbBO-QM6tgl8sW3HqIK32vsR6HEFtqXnsNZjfYW8UNCtH6uFhmuihk0w6nZGWS-oD1kI3lJUBjKNsTKKYYNUHAmUCEkRkVw5mX3ONA-R1AkhnKmYhgIrEnEkYvtQJhTzGB2BRjEr9LEDSRGEqOaRsf-4ERFPGVaI8NSkEnOFTkDTTdpkvpTRmKzm6_SP-1dguzfKB5NBf_hwBnbcR3QYrYidg0a5qPSFXQ2U4tLbwBfVMrNt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%2F+IEEE+International+Symposium+on+Computer-Based+Medical+Systems&rft.atitle=Intra-Subject+Clustering+of+ECG+Heartbeats+from+Wearable+Devices+Using+Deep+Learning+and+Feature+Engineering&rft.au=Digiacomo%2C+Federico&rft.au=Olmo%2C+Gabriella&rft.au=Gumiero%2C+Alessandro&rft.date=2025-06-18&rft.pub=IEEE&rft.eissn=2372-9198&rft.spage=57&rft.epage=64&rft_id=info:doi/10.1109%2FCBMS65348.2025.00021&rft.externalDocID=11058792