Co-Hub Node-Based Multiview Graph Learning

In many applications, learning the graph structure from nodal observations, is a significant task. Existing approaches are mostly limited to single graph learning assuming that the observed data are homogeneous. In many applications, data sets are heterogeneous and involve multiple related graphs, i...

Full description

Saved in:
Bibliographic Details
Published inIEEE Statistical Signal Processing Workshop pp. 1 - 5
Main Authors Alwardat, Mohammad, Aviyente, Selin
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.06.2025
Subjects
Online AccessGet full text
ISSN2693-3551
DOI10.1109/SSP64130.2025.11073425

Cover

Loading…
Abstract In many applications, learning the graph structure from nodal observations, is a significant task. Existing approaches are mostly limited to single graph learning assuming that the observed data are homogeneous. In many applications, data sets are heterogeneous and involve multiple related graphs, i.e., multiview graphs. Recent work on multiview graph learning ensures the similarity through edge-based similarity between the views. In this paper, we take a node-based approach instead of assuming that similarities across views are driven by individual edges, providing a more intuitive interpretation. In particular, we focus on a co-hub node model, where the different views are assumed to share a set of hub nodes. The corresponding optimization framework is formulated by imposing structured sparsity on the connectivities of the co-hub nodes. The proposed approach is evaluated on synthetic graph data and functional magnetic resonance imaging (fMRI) time series data across multiple subjects.
AbstractList In many applications, learning the graph structure from nodal observations, is a significant task. Existing approaches are mostly limited to single graph learning assuming that the observed data are homogeneous. In many applications, data sets are heterogeneous and involve multiple related graphs, i.e., multiview graphs. Recent work on multiview graph learning ensures the similarity through edge-based similarity between the views. In this paper, we take a node-based approach instead of assuming that similarities across views are driven by individual edges, providing a more intuitive interpretation. In particular, we focus on a co-hub node model, where the different views are assumed to share a set of hub nodes. The corresponding optimization framework is formulated by imposing structured sparsity on the connectivities of the co-hub nodes. The proposed approach is evaluated on synthetic graph data and functional magnetic resonance imaging (fMRI) time series data across multiple subjects.
Author Alwardat, Mohammad
Aviyente, Selin
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Alwardat
  fullname: Alwardat, Mohammad
  email: alwardat@msu.edu
  organization: Michigan State University,Electrical and Computer Engineering,East Lansing,MI
– sequence: 2
  givenname: Selin
  surname: Aviyente
  fullname: Aviyente, Selin
  email: aviyente@msu.edu
  organization: Michigan State University,Electrical and Computer Engineering,East Lansing,MI
BookMark eNo1j8tKAzEUQKMo2Nb5A5FZC6n35ua51EHbwviAdl_SJKOROlNmWsW_F1FXB87iwBmzk7ZrE2OXCFNEcNfL5bOWSDAVINSPMiSFOmKFM84SoUILII_ZSGhHnJTCM1YMwxsAoLaCrBixq6rj88OmfOxi4rd-SLF8OGz3-SOnz3LW-91rWSfft7l9OWenjd8OqfjjhK3u71bVnNdPs0V1U_PsaM8DWe0bo1HQRqoQychAMkbtTDCodIBEHqPTTTASVQwQ0FqhjGg8NtbRhF38ZnNKab3r87vvv9b_d_QNXQlDSA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SSP64130.2025.11073425
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331518004
EISSN 2693-3551
EndPage 5
ExternalDocumentID 11073425
Genre orig-research
GrantInformation_xml – fundername: Air Force Office of Scientific Research
  funderid: 10.13039/100000181
– fundername: National Science Foundation
  funderid: 10.13039/100000001
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-c386af76123b45cd374c34dd697c7156c0e3a1d96fc7415dc0c1882572fa1f893
IEDL.DBID RIE
IngestDate Wed Jul 23 05:50:30 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-c386af76123b45cd374c34dd697c7156c0e3a1d96fc7415dc0c1882572fa1f893
PageCount 5
ParticipantIDs ieee_primary_11073425
PublicationCentury 2000
PublicationDate 2025-June-8
PublicationDateYYYYMMDD 2025-06-08
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-8
  day: 08
PublicationDecade 2020
PublicationTitle IEEE Statistical Signal Processing Workshop
PublicationTitleAbbrev SSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001682382
Score 1.9137341
Snippet In many applications, learning the graph structure from nodal observations, is a significant task. Existing approaches are mostly limited to single graph...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Brain Network
Co-Hub Nodes
Conferences
Data models
Functional magnetic resonance imaging
Graph Learning
Laplace equations
Multiview graphs
Optimization
Signal processing
Time series analysis
Title Co-Hub Node-Based Multiview Graph Learning
URI https://ieeexplore.ieee.org/document/11073425
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1sT3rxq-I3OXgSNk2yye7marEWwVJohd7KZncjIjRSkou_3pltalUQvCWBsNkk7Ju3M-8NwI3g0snYJEwLpclUWzCiBUxZg8ExYrb2XUuexmL0nD7Os3krVvdaGOecLz5zIR36XL6tTENbZX3iKhx_sg50kLmtxVrbDRWhEH6SVgUcR3l_Op0IWqORBSZZuLn5RxsVjyLDfRhvxl8Xj7yFTV2E5uOXNeO_H_AAelvBXjD5gqJD2HHLI9j75jV4DLeDio2aIhhX1rE7xC4bePEtpQaCB7KtDlqv1ZcezIb3s8GItY0S2GvOa2a4ErqUZKRSpJmxXKaGp9aKXBqJ_MxEjuvY5iTrQby2JjIxBtaZTEodlxiwnEB3WS3dKQRpjKdkSWRKSflhFblSKm7SpNCZzfIz6NGsF-9rK4zFZsLnf1y_gF16-b62Sl1Ct1417gpRvC6u_df7BEs0l9k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7oPKgXf038bQ-ehHRtkybp1eGsupXBJuw20iQVEVqR9uJfb5J1TgXBWxIIJCTkey_vfd8DuKKYaRbKCAnKhRXVpsi6BYgraYxjg9nCVS0ZZTR9Ig-zeNaS1R0XRmvtks-0b5sulq8q2divsp71VbC5ZOuwYYCfJAu61upLhXIDQFHLAw6DpDeZjKl9pY0fGMX-cvqPQioORwY7kC1XsEgfefWbOvflxy9xxn8vcRe6K8qeN_4Coz1Y0-U-bH9TGzyA636F0ib3skppdGPQS3mOfmuDA96dFa72WrXV5y5MB7fTforaUgnoJcE1kphTUTArpZKTWCrMiMREKZowyYyHJgONRagSS-wxiK1kIENjWscsKkRYGJPlEDplVeoj8EhoulaUSBbMRoh5oAvGsSRRLmIVJ8fQtbuevy3EMObLDZ_8MX4Jm-l0NJwP77PHU9iyB-EyrfgZdOr3Rp8bTK_zC3eSn3t-myk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Statistical+Signal+Processing+Workshop&rft.atitle=Co-Hub+Node-Based+Multiview+Graph+Learning&rft.au=Alwardat%2C+Mohammad&rft.au=Aviyente%2C+Selin&rft.date=2025-06-08&rft.pub=IEEE&rft.eissn=2693-3551&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FSSP64130.2025.11073425&rft.externalDocID=11073425