Co-Hub Node-Based Multiview Graph Learning
In many applications, learning the graph structure from nodal observations, is a significant task. Existing approaches are mostly limited to single graph learning assuming that the observed data are homogeneous. In many applications, data sets are heterogeneous and involve multiple related graphs, i...
Saved in:
Published in | IEEE Statistical Signal Processing Workshop pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2693-3551 |
DOI | 10.1109/SSP64130.2025.11073425 |
Cover
Loading…
Abstract | In many applications, learning the graph structure from nodal observations, is a significant task. Existing approaches are mostly limited to single graph learning assuming that the observed data are homogeneous. In many applications, data sets are heterogeneous and involve multiple related graphs, i.e., multiview graphs. Recent work on multiview graph learning ensures the similarity through edge-based similarity between the views. In this paper, we take a node-based approach instead of assuming that similarities across views are driven by individual edges, providing a more intuitive interpretation. In particular, we focus on a co-hub node model, where the different views are assumed to share a set of hub nodes. The corresponding optimization framework is formulated by imposing structured sparsity on the connectivities of the co-hub nodes. The proposed approach is evaluated on synthetic graph data and functional magnetic resonance imaging (fMRI) time series data across multiple subjects. |
---|---|
AbstractList | In many applications, learning the graph structure from nodal observations, is a significant task. Existing approaches are mostly limited to single graph learning assuming that the observed data are homogeneous. In many applications, data sets are heterogeneous and involve multiple related graphs, i.e., multiview graphs. Recent work on multiview graph learning ensures the similarity through edge-based similarity between the views. In this paper, we take a node-based approach instead of assuming that similarities across views are driven by individual edges, providing a more intuitive interpretation. In particular, we focus on a co-hub node model, where the different views are assumed to share a set of hub nodes. The corresponding optimization framework is formulated by imposing structured sparsity on the connectivities of the co-hub nodes. The proposed approach is evaluated on synthetic graph data and functional magnetic resonance imaging (fMRI) time series data across multiple subjects. |
Author | Alwardat, Mohammad Aviyente, Selin |
Author_xml | – sequence: 1 givenname: Mohammad surname: Alwardat fullname: Alwardat, Mohammad email: alwardat@msu.edu organization: Michigan State University,Electrical and Computer Engineering,East Lansing,MI – sequence: 2 givenname: Selin surname: Aviyente fullname: Aviyente, Selin email: aviyente@msu.edu organization: Michigan State University,Electrical and Computer Engineering,East Lansing,MI |
BookMark | eNo1j8tKAzEUQKMo2Nb5A5FZC6n35ua51EHbwviAdl_SJKOROlNmWsW_F1FXB87iwBmzk7ZrE2OXCFNEcNfL5bOWSDAVINSPMiSFOmKFM84SoUILII_ZSGhHnJTCM1YMwxsAoLaCrBixq6rj88OmfOxi4rd-SLF8OGz3-SOnz3LW-91rWSfft7l9OWenjd8OqfjjhK3u71bVnNdPs0V1U_PsaM8DWe0bo1HQRqoQychAMkbtTDCodIBEHqPTTTASVQwQ0FqhjGg8NtbRhF38ZnNKab3r87vvv9b_d_QNXQlDSA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SSP64130.2025.11073425 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331518004 |
EISSN | 2693-3551 |
EndPage | 5 |
ExternalDocumentID | 11073425 |
Genre | orig-research |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research funderid: 10.13039/100000181 – fundername: National Science Foundation funderid: 10.13039/100000001 |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-c386af76123b45cd374c34dd697c7156c0e3a1d96fc7415dc0c1882572fa1f893 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 23 05:50:30 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-c386af76123b45cd374c34dd697c7156c0e3a1d96fc7415dc0c1882572fa1f893 |
PageCount | 5 |
ParticipantIDs | ieee_primary_11073425 |
PublicationCentury | 2000 |
PublicationDate | 2025-June-8 |
PublicationDateYYYYMMDD | 2025-06-08 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | IEEE Statistical Signal Processing Workshop |
PublicationTitleAbbrev | SSP |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001682382 |
Score | 1.9137341 |
Snippet | In many applications, learning the graph structure from nodal observations, is a significant task. Existing approaches are mostly limited to single graph... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Brain Network Co-Hub Nodes Conferences Data models Functional magnetic resonance imaging Graph Learning Laplace equations Multiview graphs Optimization Signal processing Time series analysis |
Title | Co-Hub Node-Based Multiview Graph Learning |
URI | https://ieeexplore.ieee.org/document/11073425 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1sT3rxq-I3OXgSNk2yye7marEWwVJohd7KZncjIjRSkou_3pltalUQvCWBsNkk7Ju3M-8NwI3g0snYJEwLpclUWzCiBUxZg8ExYrb2XUuexmL0nD7Os3krVvdaGOecLz5zIR36XL6tTENbZX3iKhx_sg50kLmtxVrbDRWhEH6SVgUcR3l_Op0IWqORBSZZuLn5RxsVjyLDfRhvxl8Xj7yFTV2E5uOXNeO_H_AAelvBXjD5gqJD2HHLI9j75jV4DLeDio2aIhhX1rE7xC4bePEtpQaCB7KtDlqv1ZcezIb3s8GItY0S2GvOa2a4ErqUZKRSpJmxXKaGp9aKXBqJ_MxEjuvY5iTrQby2JjIxBtaZTEodlxiwnEB3WS3dKQRpjKdkSWRKSflhFblSKm7SpNCZzfIz6NGsF-9rK4zFZsLnf1y_gF16-b62Sl1Ct1417gpRvC6u_df7BEs0l9k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7oPKgXf038bQ-ehHRtkybp1eGsupXBJuw20iQVEVqR9uJfb5J1TgXBWxIIJCTkey_vfd8DuKKYaRbKCAnKhRXVpsi6BYgraYxjg9nCVS0ZZTR9Ig-zeNaS1R0XRmvtks-0b5sulq8q2divsp71VbC5ZOuwYYCfJAu61upLhXIDQFHLAw6DpDeZjKl9pY0fGMX-cvqPQioORwY7kC1XsEgfefWbOvflxy9xxn8vcRe6K8qeN_4Coz1Y0-U-bH9TGzyA636F0ib3skppdGPQS3mOfmuDA96dFa72WrXV5y5MB7fTforaUgnoJcE1kphTUTArpZKTWCrMiMREKZowyYyHJgONRagSS-wxiK1kIENjWscsKkRYGJPlEDplVeoj8EhoulaUSBbMRoh5oAvGsSRRLmIVJ8fQtbuevy3EMObLDZ_8MX4Jm-l0NJwP77PHU9iyB-EyrfgZdOr3Rp8bTK_zC3eSn3t-myk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Statistical+Signal+Processing+Workshop&rft.atitle=Co-Hub+Node-Based+Multiview+Graph+Learning&rft.au=Alwardat%2C+Mohammad&rft.au=Aviyente%2C+Selin&rft.date=2025-06-08&rft.pub=IEEE&rft.eissn=2693-3551&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FSSP64130.2025.11073425&rft.externalDocID=11073425 |