Modified Improved Apriori Algorithm for Reduced Time Complexity

In today's era, transactional datasets are ubiquitous and continue to grow in size, making it increasingly challenging to mine frequent itemsets efficiently. The Apriori algorithm is a well-known method for mining frequent itemsets, but it suffers from high time complexity as the size of the da...

Full description

Saved in:
Bibliographic Details
Published in2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0 pp. 1 - 5
Main Authors Tiwari, Geeta, Dubey, Shirish Mohan, Sharma, Gaurav, Bansal, Apporva
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In today's era, transactional datasets are ubiquitous and continue to grow in size, making it increasingly challenging to mine frequent itemsets efficiently. The Apriori algorithm is a well-known method for mining frequent itemsets, but it suffers from high time complexity as the size of the dataset increases. In this paper, we propose a multicore modified Apriori algorithm using machine learning to address this challenge. Our proposed algorithm leverages the parallel processing capability of modern multicore processors and integrates machine learning techniques to reduce the time complexity of the Apriori algorithm. The results of our experiments show that our proposed algorithm significantly outperforms other Apriori algorithms in terms of runtime, making it a promising solution for mining frequent itemsets from large transactional datasets.
AbstractList In today's era, transactional datasets are ubiquitous and continue to grow in size, making it increasingly challenging to mine frequent itemsets efficiently. The Apriori algorithm is a well-known method for mining frequent itemsets, but it suffers from high time complexity as the size of the dataset increases. In this paper, we propose a multicore modified Apriori algorithm using machine learning to address this challenge. Our proposed algorithm leverages the parallel processing capability of modern multicore processors and integrates machine learning techniques to reduce the time complexity of the Apriori algorithm. The results of our experiments show that our proposed algorithm significantly outperforms other Apriori algorithms in terms of runtime, making it a promising solution for mining frequent itemsets from large transactional datasets.
Author Sharma, Gaurav
Dubey, Shirish Mohan
Tiwari, Geeta
Bansal, Apporva
Author_xml – sequence: 1
  givenname: Geeta
  surname: Tiwari
  fullname: Tiwari, Geeta
  email: geeta.tiwari@poornima.org
  organization: Poornima College of Engineering, Jaipur,Computer Engineering,Jaipur,India
– sequence: 2
  givenname: Shirish Mohan
  surname: Dubey
  fullname: Dubey, Shirish Mohan
  email: shirish.dubey@poornima.org
  organization: Poornima College of Engineering, Jaipur,Computer Engineering,Jaipur,India
– sequence: 3
  givenname: Gaurav
  surname: Sharma
  fullname: Sharma, Gaurav
  email: gauravsharma@poornima.org
  organization: Poornima College of Engineering, Jaipur,Computer Engineering,Jaipur,India
– sequence: 4
  givenname: Apporva
  surname: Bansal
  fullname: Bansal, Apporva
  email: appoorva.bansal@poornima.org
  organization: Poornima College of Engineering, Jaipur,Computer Engineering,Jaipur,India
BookMark eNo1j89KxDAYxCPoQdd9Aw95ga5J03xNTlKKfxZWC9L7kiZfNNBsSq3ivr0R19MMMzD85oqcH9IBCaGcbThn-rbr2-4FZF2qTclK-RvWTAM_I2tdayUEl0IKYJfk7jm54AM6uo3TnL6yaaY5pDnQZnzLsrxH6tNMX9F92tz2ISJtU5xG_A7L8ZpceDN-4PqkK9I_3PftU7HrHrdtsyuCFksxeAU1VEYCVMrqyoCwYNFaaWTlOJRaclDghGZDBnbKaD5wo4BJK9FzsSI3f7MBEfcZMJr5uP-_JX4A-qVHHg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/OTCON65728.2025.11070961
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331535360
EndPage 5
ExternalDocumentID 11070961
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-bf86764a56648c94a63c6cecc5a54d162951686d390b202d8a91b1a8605c5ef13
IEDL.DBID RIE
IngestDate Wed Aug 20 06:20:58 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-bf86764a56648c94a63c6cecc5a54d162951686d390b202d8a91b1a8605c5ef13
PageCount 5
ParticipantIDs ieee_primary_11070961
PublicationCentury 2000
PublicationDate 2025-April-9
PublicationDateYYYYMMDD 2025-04-09
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-9
  day: 09
PublicationDecade 2020
PublicationTitle 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0
PublicationTitleAbbrev OTCON
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9075892
Snippet In today's era, transactional datasets are ubiquitous and continue to grow in size, making it increasingly challenging to mine frequent itemsets efficiently....
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Approximation algorithms
Enhanced Apriori Algorithm
Frequent item Introduction
Frequent Pattern Mining
Itemsets
Machine learning
Machine learning algorithms
Multicore processing
Parallel Computing
Parallel processing
Program processors
Runtime
Technological innovation
Time complexity
Transactional Dataset
Title Modified Improved Apriori Algorithm for Reduced Time Complexity
URI https://ieeexplore.ieee.org/document/11070961
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT55UrPiokoPXTfPY3WRPUoqlCG1FKvRW9hUNalNCetBf70zSKAqCp102C_sY2Hnk-2YIuQ5EFlmnFNU2dpSFoaQ6yjh1HL0NxRKrkTs8nYnJI7tb8uWOrF5zYZxzNfjM-dit_-XbwmwxVDZAXwVLlHRIBzy3hqzVonMCOZgvRvOZ4EmEkK2I--30H4VTar0xPiCzdsUGLvLibyvtm49fyRj_vaVD0vum6Hn3X8rniOy59TG5mRY2z8Co9JpYAXSGmzIvytwbvj5BUz2_eWCleg-YsBW-IgHEwycB02JW7z2yGN8uRhO6q5BAcxlXVGepSARTYJKx1EimRGyEAaFwxZkNRQTmk0iFjWWg4UZsqmSoQ5WCC2O4y8L4hHTXxdqdwh0y2LAyMNUljJlYC6uRU8uDDIOE7Iz08PCrTZMDY9We-_yP8QuyjzKoMS6yT7pVuXWXoL4rfVWL7RNOt5se
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvSkYsW3OXhNmsfuJjlJKZaqbSoSobeyr2ioNqWkB_31ziSNoiB42mWTZR8DmUe-b4aQK5dnvjZC2FIHxqaeF9vSz5htGHobgoZaInd4lPDBE72bsMmarF5xYYwxFfjMONit_uXrQq0wVNZBXwVLlGySLVD8zKvpWg0-x40747Q3TjgLfQRt-cxpJvwonVJpjv4uSZo1a8DIzFmV0lEfv9Ix_ntTe6T9TdKzHr7Uzz7ZMPMDcj0qdJ6BWWnV0QLodBfLvFjmVvf1GZry5c0CO9V6xJSt8BQpIBZ-FDAxZvneJmn_Ju0N7HWNBDuPg9KWWcRDTgUYZTRSMRU8UFyBWJhgVHvcBwOKR1wHsSvhRnQkYk96IgInRjGTecEhac2LuTmCO6SwYaHgVRNSqgLJtURWLXMzDBPSY9LGw08XdRaMaXPukz_GL8n2IB0Np8Pb5P6U7KA8KsRLfEZa5XJlzkGZl_KiEuEnmbieZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+4th+OPJU+International+Technology+Conference+%28OTCON%29+on+Smart+Computing+for+Innovation+and+Advancement+in+Industry+5.0&rft.atitle=Modified+Improved+Apriori+Algorithm+for+Reduced+Time+Complexity&rft.au=Tiwari%2C+Geeta&rft.au=Dubey%2C+Shirish+Mohan&rft.au=Sharma%2C+Gaurav&rft.au=Bansal%2C+Apporva&rft.date=2025-04-09&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FOTCON65728.2025.11070961&rft.externalDocID=11070961