Modified Improved Apriori Algorithm for Reduced Time Complexity
In today's era, transactional datasets are ubiquitous and continue to grow in size, making it increasingly challenging to mine frequent itemsets efficiently. The Apriori algorithm is a well-known method for mining frequent itemsets, but it suffers from high time complexity as the size of the da...
Saved in:
Published in | 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0 pp. 1 - 5 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
09.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In today's era, transactional datasets are ubiquitous and continue to grow in size, making it increasingly challenging to mine frequent itemsets efficiently. The Apriori algorithm is a well-known method for mining frequent itemsets, but it suffers from high time complexity as the size of the dataset increases. In this paper, we propose a multicore modified Apriori algorithm using machine learning to address this challenge. Our proposed algorithm leverages the parallel processing capability of modern multicore processors and integrates machine learning techniques to reduce the time complexity of the Apriori algorithm. The results of our experiments show that our proposed algorithm significantly outperforms other Apriori algorithms in terms of runtime, making it a promising solution for mining frequent itemsets from large transactional datasets. |
---|---|
AbstractList | In today's era, transactional datasets are ubiquitous and continue to grow in size, making it increasingly challenging to mine frequent itemsets efficiently. The Apriori algorithm is a well-known method for mining frequent itemsets, but it suffers from high time complexity as the size of the dataset increases. In this paper, we propose a multicore modified Apriori algorithm using machine learning to address this challenge. Our proposed algorithm leverages the parallel processing capability of modern multicore processors and integrates machine learning techniques to reduce the time complexity of the Apriori algorithm. The results of our experiments show that our proposed algorithm significantly outperforms other Apriori algorithms in terms of runtime, making it a promising solution for mining frequent itemsets from large transactional datasets. |
Author | Sharma, Gaurav Dubey, Shirish Mohan Tiwari, Geeta Bansal, Apporva |
Author_xml | – sequence: 1 givenname: Geeta surname: Tiwari fullname: Tiwari, Geeta email: geeta.tiwari@poornima.org organization: Poornima College of Engineering, Jaipur,Computer Engineering,Jaipur,India – sequence: 2 givenname: Shirish Mohan surname: Dubey fullname: Dubey, Shirish Mohan email: shirish.dubey@poornima.org organization: Poornima College of Engineering, Jaipur,Computer Engineering,Jaipur,India – sequence: 3 givenname: Gaurav surname: Sharma fullname: Sharma, Gaurav email: gauravsharma@poornima.org organization: Poornima College of Engineering, Jaipur,Computer Engineering,Jaipur,India – sequence: 4 givenname: Apporva surname: Bansal fullname: Bansal, Apporva email: appoorva.bansal@poornima.org organization: Poornima College of Engineering, Jaipur,Computer Engineering,Jaipur,India |
BookMark | eNo1j89KxDAYxCPoQdd9Aw95ga5J03xNTlKKfxZWC9L7kiZfNNBsSq3ivr0R19MMMzD85oqcH9IBCaGcbThn-rbr2-4FZF2qTclK-RvWTAM_I2tdayUEl0IKYJfk7jm54AM6uo3TnL6yaaY5pDnQZnzLsrxH6tNMX9F92tz2ISJtU5xG_A7L8ZpceDN-4PqkK9I_3PftU7HrHrdtsyuCFksxeAU1VEYCVMrqyoCwYNFaaWTlOJRaclDghGZDBnbKaD5wo4BJK9FzsSI3f7MBEfcZMJr5uP-_JX4A-qVHHg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/OTCON65728.2025.11070961 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798331535360 |
EndPage | 5 |
ExternalDocumentID | 11070961 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i93t-bf86764a56648c94a63c6cecc5a54d162951686d390b202d8a91b1a8605c5ef13 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 20 06:20:58 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-bf86764a56648c94a63c6cecc5a54d162951686d390b202d8a91b1a8605c5ef13 |
PageCount | 5 |
ParticipantIDs | ieee_primary_11070961 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-9 |
PublicationDateYYYYMMDD | 2025-04-09 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-9 day: 09 |
PublicationDecade | 2020 |
PublicationTitle | 2025 4th OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 5.0 |
PublicationTitleAbbrev | OTCON |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9075892 |
Snippet | In today's era, transactional datasets are ubiquitous and continue to grow in size, making it increasingly challenging to mine frequent itemsets efficiently.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Approximation algorithms Enhanced Apriori Algorithm Frequent item Introduction Frequent Pattern Mining Itemsets Machine learning Machine learning algorithms Multicore processing Parallel Computing Parallel processing Program processors Runtime Technological innovation Time complexity Transactional Dataset |
Title | Modified Improved Apriori Algorithm for Reduced Time Complexity |
URI | https://ieeexplore.ieee.org/document/11070961 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT55UrPiokoPXTfPY3WRPUoqlCG1FKvRW9hUNalNCetBf70zSKAqCp102C_sY2Hnk-2YIuQ5EFlmnFNU2dpSFoaQ6yjh1HL0NxRKrkTs8nYnJI7tb8uWOrF5zYZxzNfjM-dit_-XbwmwxVDZAXwVLlHRIBzy3hqzVonMCOZgvRvOZ4EmEkK2I--30H4VTar0xPiCzdsUGLvLibyvtm49fyRj_vaVD0vum6Hn3X8rniOy59TG5mRY2z8Co9JpYAXSGmzIvytwbvj5BUz2_eWCleg-YsBW-IgHEwycB02JW7z2yGN8uRhO6q5BAcxlXVGepSARTYJKx1EimRGyEAaFwxZkNRQTmk0iFjWWg4UZsqmSoQ5WCC2O4y8L4hHTXxdqdwh0y2LAyMNUljJlYC6uRU8uDDIOE7Iz08PCrTZMDY9We-_yP8QuyjzKoMS6yT7pVuXWXoL4rfVWL7RNOt5se |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvSkYsW3OXhNmsfuJjlJKZaqbSoSobeyr2ioNqWkB_31ziSNoiB42mWTZR8DmUe-b4aQK5dnvjZC2FIHxqaeF9vSz5htGHobgoZaInd4lPDBE72bsMmarF5xYYwxFfjMONit_uXrQq0wVNZBXwVLlGySLVD8zKvpWg0-x40747Q3TjgLfQRt-cxpJvwonVJpjv4uSZo1a8DIzFmV0lEfv9Ix_ntTe6T9TdKzHr7Uzz7ZMPMDcj0qdJ6BWWnV0QLodBfLvFjmVvf1GZry5c0CO9V6xJSt8BQpIBZ-FDAxZvneJmn_Ju0N7HWNBDuPg9KWWcRDTgUYZTRSMRU8UFyBWJhgVHvcBwOKR1wHsSvhRnQkYk96IgInRjGTecEhac2LuTmCO6SwYaHgVRNSqgLJtURWLXMzDBPSY9LGw08XdRaMaXPukz_GL8n2IB0Np8Pb5P6U7KA8KsRLfEZa5XJlzkGZl_KiEuEnmbieZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+4th+OPJU+International+Technology+Conference+%28OTCON%29+on+Smart+Computing+for+Innovation+and+Advancement+in+Industry+5.0&rft.atitle=Modified+Improved+Apriori+Algorithm+for+Reduced+Time+Complexity&rft.au=Tiwari%2C+Geeta&rft.au=Dubey%2C+Shirish+Mohan&rft.au=Sharma%2C+Gaurav&rft.au=Bansal%2C+Apporva&rft.date=2025-04-09&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FOTCON65728.2025.11070961&rft.externalDocID=11070961 |