Temporal Convolutional Networks for Cloud-Based Renewable Energy Forecasting: A Deep Learning Approach to Power Production and Battery Health Prediction
This paper presents a cloud-based forecasting system for renewable energy generation and battery State of Health (SOH) prediction using Temporal Convolutional Networks (TCN). As the adoption of renewable energy accelerates, precise forecasting of both power production and storage capacity becomes cr...
Saved in:
Published in | Conference record of the Industry Applications Conference pp. 1 - 6 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
15.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2576-702X |
DOI | 10.1109/IAS62731.2025.11061607 |
Cover
Loading…
Abstract | This paper presents a cloud-based forecasting system for renewable energy generation and battery State of Health (SOH) prediction using Temporal Convolutional Networks (TCN). As the adoption of renewable energy accelerates, precise forecasting of both power production and storage capacity becomes critical for grid stability and efficiency. Using hourly data collected from operational renewable plants and energy storage systems over one year, our methodology employs polynomial regression for data smoothing before applying a five-layer TCN architecture. The model demonstrates a superior temporal pattern recognition compared to traditional LSTM approaches, particularly for multi-horizon forecasting of intermittent resources. Containerized and deployed via Google Cloud's Vertex AI with Grafana visualization, the system enables scalable implementation across diverse renewable assets. The results show an effective capture of both short-term variability in power production and long-term battery degradation trends, which is essential to optimize renewable energy dispatch and storage operations. |
---|---|
AbstractList | This paper presents a cloud-based forecasting system for renewable energy generation and battery State of Health (SOH) prediction using Temporal Convolutional Networks (TCN). As the adoption of renewable energy accelerates, precise forecasting of both power production and storage capacity becomes critical for grid stability and efficiency. Using hourly data collected from operational renewable plants and energy storage systems over one year, our methodology employs polynomial regression for data smoothing before applying a five-layer TCN architecture. The model demonstrates a superior temporal pattern recognition compared to traditional LSTM approaches, particularly for multi-horizon forecasting of intermittent resources. Containerized and deployed via Google Cloud's Vertex AI with Grafana visualization, the system enables scalable implementation across diverse renewable assets. The results show an effective capture of both short-term variability in power production and long-term battery degradation trends, which is essential to optimize renewable energy dispatch and storage operations. |
Author | Wu, Chung Yi Lee, Tsung-Lu Michael Huang, Chien-Chung Tsai, Po-Yang |
Author_xml | – sequence: 1 givenname: Po-Yang surname: Tsai fullname: Tsai, Po-Yang email: mb3g0205@stust.edu.tw organization: Southern Taiwan University of Science and Technology,Dept. of Computer Science and Information Engineering,Tainan,Taiwan, R.O.C – sequence: 2 givenname: Tsung-Lu Michael surname: Lee fullname: Lee, Tsung-Lu Michael email: michaelee@stust.edu.tw organization: Southern Taiwan University of Science and Technology,Dept. of Computer Science and Information Engineering,Tainan,Taiwan, R.O.C – sequence: 3 givenname: Chung Yi surname: Wu fullname: Wu, Chung Yi email: itriB20639@itri.org.tw organization: Industrial Technology Research Institute (ITRI),Green Energy and Environment Research Laboratory,Tainan,Taiwan – sequence: 4 givenname: Chien-Chung surname: Huang fullname: Huang, Chien-Chung email: middle@itri.org.tw organization: Industrial Technology Research Institute (ITRI),Green Energy and Environment Research Laboratory,Tainan,Taiwan |
BookMark | eNo1UF9PwjAcrEYTAfkGxvQLDNtubVffxgQhIUqUB99It_0G09EuXZHwTfy4Dv88Xe4uuctdH10YawChW0pGlBJ1N09eBZMhHTHC-EkSVBB5hoZKxlQIHnEphTxHPcalCCRhb1eo37bvhJAwFrSHvlawa6zTNU6t-bT13lfWdOwJ_MG6jxaX1uG0tvsiGOsWCvwCBg46qwFPDLjNEU-tg1y3vjKbe5zgB4AGL0A70wk4aRpndb7F3uKlPYDDS2eLfX5qwdoUeKy9B3fEM9C133YuFNWPe40uS123MPzDAVpNJ6t0FiyeH-dpsggqFfog04JGWZQDLwoWld1koqTKyzLOdJypbjXjwGIaRblgLJKq5GFREkE4UClAhQN08xtbAcC6cdVOu-P6_8jwGyThbAk |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IAS62731.2025.11061607 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781665457767 1665457767 |
EISSN | 2576-702X |
EndPage | 6 |
ExternalDocumentID | 11061607 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IM AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIO RNS |
ID | FETCH-LOGICAL-i93t-ba614b4ce5dd24f1660979cff8ba8b925725e28144c622479f53df0605e176e93 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:14:04 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-ba614b4ce5dd24f1660979cff8ba8b925725e28144c622479f53df0605e176e93 |
PageCount | 6 |
ParticipantIDs | ieee_primary_11061607 |
PublicationCentury | 2000 |
PublicationDate | 2025-June-15 |
PublicationDateYYYYMMDD | 2025-06-15 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-June-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Conference record of the Industry Applications Conference |
PublicationTitleAbbrev | IAS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003861 |
Score | 2.2946625 |
Snippet | This paper presents a cloud-based forecasting system for renewable energy generation and battery State of Health (SOH) prediction using Temporal Convolutional... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Batteries Battery State of Health Cloud-based Prediction Convolutional neural networks Deep learning Forecasting Power system stability Predictive models Production Renewable Energy Forecasting Renewable energy sources Smoothing methods Stability analysis Temporal Convolutional Networks |
Title | Temporal Convolutional Networks for Cloud-Based Renewable Energy Forecasting: A Deep Learning Approach to Power Production and Battery Health Prediction |
URI | https://ieeexplore.ieee.org/document/11061607 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJ7iwFbFrDlyT1nHixNxKaQVIVBUUqbfKywQhqraiCQi-hM_FTtKySEjcklhWLGfi8Xjee0PIacIUMmTSi6RLM3KuPJUENlQxYcq4oCkrsDk3PX55H14Po2FFVi-4MIhYgM_Qd5dFLt9Mde6OyhrUxS_cccdXrZ2VZK3lsssSTisKMG2KxlXrjlvX7ELAIPIXPX_UUClcSHeD9BYvL5EjT36eKV-__9Jl_PfoNkn9i60H_aUf2iIrONkm69-EBnfIx6BUoBqD7fNSWZu965Ug8DnYrSu0x9PceOfWrRm4tUvgq2NVQacgB4Ir4anl3IGkz6AFF4gzqLRZH6BVCZNDNoW-K7vmxmNKXVqQEwOliucblKQn2-rSQ661TgbdzqB96VU1GbxHwTJPSevOVagxMiYIU8p5U8RCp2miZKKE_f-DCIPERmma281BLNKImbRpYyakMUfBdkltMp3gHgHKYy2loChiFuoYlaZGpVqZIJYBi80-qbs5Hs1K1Y3RYnoP_nh-SNbcp3YwLhodkVr2nOOx3TBk6qQwlE_Na8Jg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHIALWxE7c-CaUseJE3MrpahAGyEoErfKywQhUINoCoIv4XOxk7QsEhK3JJYVy7Fmybz3hpCDmClkyKQXSldm5Fx5KvZtqmKClHFBU1Zgc3oJ79wE57fhbUVWL7gwiFiAz7DuLotavsn02P0qO6Quf-GOOz5nHX8QlnStqeFlMacVCZg2xOFZ85pb5-ySQD-sT-b-6KJSOJHTJZJMXl9iRx7q41zV9fsvZcZ_r2-Z1L74enA59UQrZAaHq2Txm9TgGvnolxpUj2DnvFTnzd4lJQx8BDZ4hdZjNjbesXVsBq6sEXx1vCpoF_RAcE08tRw5mPQRNOEE8QkqddY7aFbS5JBncOkar7n1mFKZFuTQQKnj-QYl7cmOugKRG62R_mm73-p4VVcG716w3FPSOnQVaAyN8YOUct4QkdBpGisZK2EtgB-iH9s8TXMbHkQiDZlJGzZrQhpxFGydzA6zIW4QoDzSUgqKImKBjlBpalSqlfEj6bPIbJKa2-PBU6m7MZhs79Yfz_fJfKff6w66Z8nFNllwn92Bumi4Q2bz5zHu2vAhV3vFofkEIWLFrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+of+the+Industry+Applications+Conference&rft.atitle=Temporal+Convolutional+Networks+for+Cloud-Based+Renewable+Energy+Forecasting%3A+A+Deep+Learning+Approach+to+Power+Production+and+Battery+Health+Prediction&rft.au=Tsai%2C+Po-Yang&rft.au=Lee%2C+Tsung-Lu+Michael&rft.au=Wu%2C+Chung+Yi&rft.au=Huang%2C+Chien-Chung&rft.date=2025-06-15&rft.pub=IEEE&rft.eissn=2576-702X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIAS62731.2025.11061607&rft.externalDocID=11061607 |