Temporal Convolutional Networks for Cloud-Based Renewable Energy Forecasting: A Deep Learning Approach to Power Production and Battery Health Prediction

This paper presents a cloud-based forecasting system for renewable energy generation and battery State of Health (SOH) prediction using Temporal Convolutional Networks (TCN). As the adoption of renewable energy accelerates, precise forecasting of both power production and storage capacity becomes cr...

Full description

Saved in:
Bibliographic Details
Published inConference record of the Industry Applications Conference pp. 1 - 6
Main Authors Tsai, Po-Yang, Lee, Tsung-Lu Michael, Wu, Chung Yi, Huang, Chien-Chung
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.06.2025
Subjects
Online AccessGet full text
ISSN2576-702X
DOI10.1109/IAS62731.2025.11061607

Cover

Loading…
Abstract This paper presents a cloud-based forecasting system for renewable energy generation and battery State of Health (SOH) prediction using Temporal Convolutional Networks (TCN). As the adoption of renewable energy accelerates, precise forecasting of both power production and storage capacity becomes critical for grid stability and efficiency. Using hourly data collected from operational renewable plants and energy storage systems over one year, our methodology employs polynomial regression for data smoothing before applying a five-layer TCN architecture. The model demonstrates a superior temporal pattern recognition compared to traditional LSTM approaches, particularly for multi-horizon forecasting of intermittent resources. Containerized and deployed via Google Cloud's Vertex AI with Grafana visualization, the system enables scalable implementation across diverse renewable assets. The results show an effective capture of both short-term variability in power production and long-term battery degradation trends, which is essential to optimize renewable energy dispatch and storage operations.
AbstractList This paper presents a cloud-based forecasting system for renewable energy generation and battery State of Health (SOH) prediction using Temporal Convolutional Networks (TCN). As the adoption of renewable energy accelerates, precise forecasting of both power production and storage capacity becomes critical for grid stability and efficiency. Using hourly data collected from operational renewable plants and energy storage systems over one year, our methodology employs polynomial regression for data smoothing before applying a five-layer TCN architecture. The model demonstrates a superior temporal pattern recognition compared to traditional LSTM approaches, particularly for multi-horizon forecasting of intermittent resources. Containerized and deployed via Google Cloud's Vertex AI with Grafana visualization, the system enables scalable implementation across diverse renewable assets. The results show an effective capture of both short-term variability in power production and long-term battery degradation trends, which is essential to optimize renewable energy dispatch and storage operations.
Author Wu, Chung Yi
Lee, Tsung-Lu Michael
Huang, Chien-Chung
Tsai, Po-Yang
Author_xml – sequence: 1
  givenname: Po-Yang
  surname: Tsai
  fullname: Tsai, Po-Yang
  email: mb3g0205@stust.edu.tw
  organization: Southern Taiwan University of Science and Technology,Dept. of Computer Science and Information Engineering,Tainan,Taiwan, R.O.C
– sequence: 2
  givenname: Tsung-Lu Michael
  surname: Lee
  fullname: Lee, Tsung-Lu Michael
  email: michaelee@stust.edu.tw
  organization: Southern Taiwan University of Science and Technology,Dept. of Computer Science and Information Engineering,Tainan,Taiwan, R.O.C
– sequence: 3
  givenname: Chung Yi
  surname: Wu
  fullname: Wu, Chung Yi
  email: itriB20639@itri.org.tw
  organization: Industrial Technology Research Institute (ITRI),Green Energy and Environment Research Laboratory,Tainan,Taiwan
– sequence: 4
  givenname: Chien-Chung
  surname: Huang
  fullname: Huang, Chien-Chung
  email: middle@itri.org.tw
  organization: Industrial Technology Research Institute (ITRI),Green Energy and Environment Research Laboratory,Tainan,Taiwan
BookMark eNo1UF9PwjAcrEYTAfkGxvQLDNtubVffxgQhIUqUB99It_0G09EuXZHwTfy4Dv88Xe4uuctdH10YawChW0pGlBJ1N09eBZMhHTHC-EkSVBB5hoZKxlQIHnEphTxHPcalCCRhb1eo37bvhJAwFrSHvlawa6zTNU6t-bT13lfWdOwJ_MG6jxaX1uG0tvsiGOsWCvwCBg46qwFPDLjNEU-tg1y3vjKbe5zgB4AGL0A70wk4aRpndb7F3uKlPYDDS2eLfX5qwdoUeKy9B3fEM9C133YuFNWPe40uS123MPzDAVpNJ6t0FiyeH-dpsggqFfog04JGWZQDLwoWld1koqTKyzLOdJypbjXjwGIaRblgLJKq5GFREkE4UClAhQN08xtbAcC6cdVOu-P6_8jwGyThbAk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IAS62731.2025.11061607
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665457767
1665457767
EISSN 2576-702X
EndPage 6
ExternalDocumentID 11061607
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IM
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIO
RNS
ID FETCH-LOGICAL-i93t-ba614b4ce5dd24f1660979cff8ba8b925725e28144c622479f53df0605e176e93
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:04 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-ba614b4ce5dd24f1660979cff8ba8b925725e28144c622479f53df0605e176e93
PageCount 6
ParticipantIDs ieee_primary_11061607
PublicationCentury 2000
PublicationDate 2025-June-15
PublicationDateYYYYMMDD 2025-06-15
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-15
  day: 15
PublicationDecade 2020
PublicationTitle Conference record of the Industry Applications Conference
PublicationTitleAbbrev IAS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003861
Score 2.2946625
Snippet This paper presents a cloud-based forecasting system for renewable energy generation and battery State of Health (SOH) prediction using Temporal Convolutional...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Batteries
Battery State of Health
Cloud-based Prediction
Convolutional neural networks
Deep learning
Forecasting
Power system stability
Predictive models
Production
Renewable Energy Forecasting
Renewable energy sources
Smoothing methods
Stability analysis
Temporal Convolutional Networks
Title Temporal Convolutional Networks for Cloud-Based Renewable Energy Forecasting: A Deep Learning Approach to Power Production and Battery Health Prediction
URI https://ieeexplore.ieee.org/document/11061607
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgJ7iwFbFrDlyT1nHixNxKaQVIVBUUqbfKywQhqraiCQi-hM_FTtKySEjcklhWLGfi8Xjee0PIacIUMmTSi6RLM3KuPJUENlQxYcq4oCkrsDk3PX55H14Po2FFVi-4MIhYgM_Qd5dFLt9Mde6OyhrUxS_cccdXrZ2VZK3lsssSTisKMG2KxlXrjlvX7ELAIPIXPX_UUClcSHeD9BYvL5EjT36eKV-__9Jl_PfoNkn9i60H_aUf2iIrONkm69-EBnfIx6BUoBqD7fNSWZu965Ug8DnYrSu0x9PceOfWrRm4tUvgq2NVQacgB4Ir4anl3IGkz6AFF4gzqLRZH6BVCZNDNoW-K7vmxmNKXVqQEwOliucblKQn2-rSQ661TgbdzqB96VU1GbxHwTJPSevOVagxMiYIU8p5U8RCp2miZKKE_f-DCIPERmma281BLNKImbRpYyakMUfBdkltMp3gHgHKYy2loChiFuoYlaZGpVqZIJYBi80-qbs5Hs1K1Y3RYnoP_nh-SNbcp3YwLhodkVr2nOOx3TBk6qQwlE_Na8Jg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELUQHIALWxE7c-CaUseJE3MrpahAGyEoErfKywQhUINoCoIv4XOxk7QsEhK3JJYVy7Fmybz3hpCDmClkyKQXSldm5Fx5KvZtqmKClHFBU1Zgc3oJ79wE57fhbUVWL7gwiFiAz7DuLotavsn02P0qO6Quf-GOOz5nHX8QlnStqeFlMacVCZg2xOFZ85pb5-ySQD-sT-b-6KJSOJHTJZJMXl9iRx7q41zV9fsvZcZ_r2-Z1L74enA59UQrZAaHq2Txm9TgGvnolxpUj2DnvFTnzd4lJQx8BDZ4hdZjNjbesXVsBq6sEXx1vCpoF_RAcE08tRw5mPQRNOEE8QkqddY7aFbS5JBncOkar7n1mFKZFuTQQKnj-QYl7cmOugKRG62R_mm73-p4VVcG716w3FPSOnQVaAyN8YOUct4QkdBpGisZK2EtgB-iH9s8TXMbHkQiDZlJGzZrQhpxFGydzA6zIW4QoDzSUgqKImKBjlBpalSqlfEj6bPIbJKa2-PBU6m7MZhs79Yfz_fJfKff6w66Z8nFNllwn92Bumi4Q2bz5zHu2vAhV3vFofkEIWLFrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+of+the+Industry+Applications+Conference&rft.atitle=Temporal+Convolutional+Networks+for+Cloud-Based+Renewable+Energy+Forecasting%3A+A+Deep+Learning+Approach+to+Power+Production+and+Battery+Health+Prediction&rft.au=Tsai%2C+Po-Yang&rft.au=Lee%2C+Tsung-Lu+Michael&rft.au=Wu%2C+Chung+Yi&rft.au=Huang%2C+Chien-Chung&rft.date=2025-06-15&rft.pub=IEEE&rft.eissn=2576-702X&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FIAS62731.2025.11061607&rft.externalDocID=11061607