Deep Learning-Based Automatic ECG Diagnosis for Arrhythmia Identification

One of the most common medical test used to record and evaluate heart activity is the electrocardiogram (ECG), which enables diagnosis of many common heart problems. Recently, learning techniques have been used to identify patterns in healthcare data sets and have stricken success in diverse tasks t...

Full description

Saved in:
Bibliographic Details
Published in2025 4th International Conference on Computing and Information Technology (ICCIT) pp. 482 - 486
Main Authors Regaeig, Khalil, Amara, Ahmed, Boubaker, Khalil, Nasraoui, Leila
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.04.2025
Subjects
Online AccessGet full text
DOI10.1109/ICCIT63348.2025.10989469

Cover

Abstract One of the most common medical test used to record and evaluate heart activity is the electrocardiogram (ECG), which enables diagnosis of many common heart problems. Recently, learning techniques have been used to identify patterns in healthcare data sets and have stricken success in diverse tasks to improve clinical practice. In this paper, we present an intelligent system designed to assist medical professionals in the early diagnosis of heart arrhythmia by leveraging ECG signals. To achieve this, we employ a convolutional neural network (CNN) to classify ECG signals into five distinct cardiac rhythm categories. The experimental results demonstrate the effectiveness of the proposed approach, achieving an average classification accuracy of 0.95 and a loss of 0.2, highlighting its reliability in arrhythmia detection.
AbstractList One of the most common medical test used to record and evaluate heart activity is the electrocardiogram (ECG), which enables diagnosis of many common heart problems. Recently, learning techniques have been used to identify patterns in healthcare data sets and have stricken success in diverse tasks to improve clinical practice. In this paper, we present an intelligent system designed to assist medical professionals in the early diagnosis of heart arrhythmia by leveraging ECG signals. To achieve this, we employ a convolutional neural network (CNN) to classify ECG signals into five distinct cardiac rhythm categories. The experimental results demonstrate the effectiveness of the proposed approach, achieving an average classification accuracy of 0.95 and a loss of 0.2, highlighting its reliability in arrhythmia detection.
Author Amara, Ahmed
Boubaker, Khalil
Regaeig, Khalil
Nasraoui, Leila
Author_xml – sequence: 1
  givenname: Khalil
  surname: Regaeig
  fullname: Regaeig, Khalil
  email: khalil.regaeig@ensi-uma.tn
  organization: National School of Computer Sciences (ENSI), University of Manouba,Tunisia
– sequence: 2
  givenname: Ahmed
  surname: Amara
  fullname: Amara, Ahmed
  email: ahmed.amara@ensi-uma.tn
  organization: National School of Computer Sciences (ENSI), University of Manouba,Tunisia
– sequence: 3
  givenname: Khalil
  surname: Boubaker
  fullname: Boubaker, Khalil
  email: khalil.boubaker@ensi-uma.tn
  organization: National School of Computer Sciences (ENSI), University of Manouba,Tunisia
– sequence: 4
  givenname: Leila
  surname: Nasraoui
  fullname: Nasraoui, Leila
  email: leila.nasraoui@supcom.tn
  organization: National School of Computer Sciences (ENSI), University of Manouba,Tunisia
BookMark eNo1j7tqwzAYRlVohzbNG2TQC9jVxbKl0VXS1GDo4j3o8isRxHKQ3SFvX0Pb6cDh8MH3gh7TlAAhTElJKVFvndbdUHNeyZIRJsrVSVXV6gFtVaMkF4QLLhl7Rt0e4IZ7MDnFdC7ezQwet9_LNJolOnzQR7yP5pymOc44TBm3OV_uy2WMBnce0hJDdGs6pVf0FMx1hu0fN2j4OAz6s-i_jp1u-yIqvhRWAQHPPfgA0jLaCOsYo05aAyTYwJxsCKsEMVWQZHUg6gCBOlY76yTnG7T7nY0AcLrlOJp8P_0f5D-Aekxj
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIT63348.2025.10989469
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350353822
9798350353839
EndPage 486
ExternalDocumentID 10989469
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-b9e0ed3dedfe8b2175bc221c8bae0fbf2c8702450a4f80ae0e56fef1c26cbc833
IEDL.DBID RIE
IngestDate Thu May 29 05:57:31 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-b9e0ed3dedfe8b2175bc221c8bae0fbf2c8702450a4f80ae0e56fef1c26cbc833
PageCount 5
ParticipantIDs ieee_primary_10989469
PublicationCentury 2000
PublicationDate 2025-April-13
PublicationDateYYYYMMDD 2025-04-13
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-13
  day: 13
PublicationDecade 2020
PublicationTitle 2025 4th International Conference on Computing and Information Technology (ICCIT)
PublicationTitleAbbrev ICCIT
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9069536
Snippet One of the most common medical test used to record and evaluate heart activity is the electrocardiogram (ECG), which enables diagnosis of many common heart...
SourceID ieee
SourceType Publisher
StartPage 482
SubjectTerms Accuracy
Arrhythmia
Classification
Convolutional Neural Network
Convolutional neural networks
Deep Learning
Electrocardiogram
Electrocardiography
Heart
Intelligent systems
Medical diagnostic imaging
Medical tests
Reliability
Rhythm
Title Deep Learning-Based Automatic ECG Diagnosis for Arrhythmia Identification
URI https://ieeexplore.ieee.org/document/10989469
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl5T0zTN2uPsNjfB4WHCbqNJXtwQt7G1B_3rTdJWURC8hRBIeC_hy8t73xeEblKtJdM8JHlXGBugyIhIHRpiIBFSQMSl1-58nIjRM3-YxbOarO65MADgi88gcE2fy9drVbqnMnvCnVy4SFuoZfdZRdZqqnNoejvOsvFUOGqpjftYHDTDf3yc4nFjeIAmzYxVuchrUBYyUB-_xBj_vaRD1Pmm6OGnL_A5QnuwOkbjPsAG15KpL-TOIpTGvbJYe11WPMjucb8qrVvusL2t4t52u3gvFm_LHFeMXVM_4XXQdDiYZiNS_5VAlmlUEJkCBR1p0NbI1rzdWCrGQpXIHKiRhil7LhmPac5NQm0fxMKACRUTSqokik5Qe7VewSnCPA6VAM5MLm2wlXB7wQPKuzQ3QPMExBnqODPMN5UaxryxwPkf_Rdo33nDZWDC6BK1i20JVxbIC3ntHfgJTrKgbQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABoog3HlgTHMdxk7GkLQ20FUOQulV-nKFCtFVJBvj1OC8QSEhsliXL1p1On8--7zuEriKtJdXMc0SHG5ugSN-R2jOOgZBLDj6TpXbneMKHj-xuGkxrsnrJhQGAsvgM3GJY_uXrpcqLpzIb4YVcOI820ZYFfhZUdK2mPodE10kcJykvyKU286OB2yz40TqlRI7BLpo0e1YFIy9unklXffySY_z3ofZQ-5ukhx--4GcfbcDiACU9gBWuRVOfnBuLURp382xZKrPifnyLe1Vx3fwN2_sq7q7Xz-_Z8-tc4Iqza-pHvDZKB_00Hjp1twRnHvmZIyMgoH0N2prZGrgTSEWpp0IpgBhpqLKRSVlABDMhsXMQcAPGU5QrqULfP0StxXIBRwizwFMcGDVC2nQrZPaKB4R1iDBARAj8GLULM8xWlR7GrLHAyR_zl2h7mI5Hs1EyuT9FO4Vniv8Yzz9DrWydw7mF9UxelM78BOT6o7o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+4th+International+Conference+on+Computing+and+Information+Technology+%28ICCIT%29&rft.atitle=Deep+Learning-Based+Automatic+ECG+Diagnosis+for+Arrhythmia+Identification&rft.au=Regaeig%2C+Khalil&rft.au=Amara%2C+Ahmed&rft.au=Boubaker%2C+Khalil&rft.au=Nasraoui%2C+Leila&rft.date=2025-04-13&rft.pub=IEEE&rft.spage=482&rft.epage=486&rft_id=info:doi/10.1109%2FICCIT63348.2025.10989469&rft.externalDocID=10989469