Deep Learning-Based Automatic ECG Diagnosis for Arrhythmia Identification
One of the most common medical test used to record and evaluate heart activity is the electrocardiogram (ECG), which enables diagnosis of many common heart problems. Recently, learning techniques have been used to identify patterns in healthcare data sets and have stricken success in diverse tasks t...
Saved in:
Published in | 2025 4th International Conference on Computing and Information Technology (ICCIT) pp. 482 - 486 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
13.04.2025
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICCIT63348.2025.10989469 |
Cover
Abstract | One of the most common medical test used to record and evaluate heart activity is the electrocardiogram (ECG), which enables diagnosis of many common heart problems. Recently, learning techniques have been used to identify patterns in healthcare data sets and have stricken success in diverse tasks to improve clinical practice. In this paper, we present an intelligent system designed to assist medical professionals in the early diagnosis of heart arrhythmia by leveraging ECG signals. To achieve this, we employ a convolutional neural network (CNN) to classify ECG signals into five distinct cardiac rhythm categories. The experimental results demonstrate the effectiveness of the proposed approach, achieving an average classification accuracy of 0.95 and a loss of 0.2, highlighting its reliability in arrhythmia detection. |
---|---|
AbstractList | One of the most common medical test used to record and evaluate heart activity is the electrocardiogram (ECG), which enables diagnosis of many common heart problems. Recently, learning techniques have been used to identify patterns in healthcare data sets and have stricken success in diverse tasks to improve clinical practice. In this paper, we present an intelligent system designed to assist medical professionals in the early diagnosis of heart arrhythmia by leveraging ECG signals. To achieve this, we employ a convolutional neural network (CNN) to classify ECG signals into five distinct cardiac rhythm categories. The experimental results demonstrate the effectiveness of the proposed approach, achieving an average classification accuracy of 0.95 and a loss of 0.2, highlighting its reliability in arrhythmia detection. |
Author | Amara, Ahmed Boubaker, Khalil Regaeig, Khalil Nasraoui, Leila |
Author_xml | – sequence: 1 givenname: Khalil surname: Regaeig fullname: Regaeig, Khalil email: khalil.regaeig@ensi-uma.tn organization: National School of Computer Sciences (ENSI), University of Manouba,Tunisia – sequence: 2 givenname: Ahmed surname: Amara fullname: Amara, Ahmed email: ahmed.amara@ensi-uma.tn organization: National School of Computer Sciences (ENSI), University of Manouba,Tunisia – sequence: 3 givenname: Khalil surname: Boubaker fullname: Boubaker, Khalil email: khalil.boubaker@ensi-uma.tn organization: National School of Computer Sciences (ENSI), University of Manouba,Tunisia – sequence: 4 givenname: Leila surname: Nasraoui fullname: Nasraoui, Leila email: leila.nasraoui@supcom.tn organization: National School of Computer Sciences (ENSI), University of Manouba,Tunisia |
BookMark | eNo1j7tqwzAYRlVohzbNG2TQC9jVxbKl0VXS1GDo4j3o8isRxHKQ3SFvX0Pb6cDh8MH3gh7TlAAhTElJKVFvndbdUHNeyZIRJsrVSVXV6gFtVaMkF4QLLhl7Rt0e4IZ7MDnFdC7ezQwet9_LNJolOnzQR7yP5pymOc44TBm3OV_uy2WMBnce0hJDdGs6pVf0FMx1hu0fN2j4OAz6s-i_jp1u-yIqvhRWAQHPPfgA0jLaCOsYo05aAyTYwJxsCKsEMVWQZHUg6gCBOlY76yTnG7T7nY0AcLrlOJp8P_0f5D-Aekxj |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCIT63348.2025.10989469 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350353822 9798350353839 |
EndPage | 486 |
ExternalDocumentID | 10989469 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i93t-b9e0ed3dedfe8b2175bc221c8bae0fbf2c8702450a4f80ae0e56fef1c26cbc833 |
IEDL.DBID | RIE |
IngestDate | Thu May 29 05:57:31 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-b9e0ed3dedfe8b2175bc221c8bae0fbf2c8702450a4f80ae0e56fef1c26cbc833 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10989469 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-13 |
PublicationDateYYYYMMDD | 2025-04-13 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | 2025 4th International Conference on Computing and Information Technology (ICCIT) |
PublicationTitleAbbrev | ICCIT |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9069536 |
Snippet | One of the most common medical test used to record and evaluate heart activity is the electrocardiogram (ECG), which enables diagnosis of many common heart... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 482 |
SubjectTerms | Accuracy Arrhythmia Classification Convolutional Neural Network Convolutional neural networks Deep Learning Electrocardiogram Electrocardiography Heart Intelligent systems Medical diagnostic imaging Medical tests Reliability Rhythm |
Title | Deep Learning-Based Automatic ECG Diagnosis for Arrhythmia Identification |
URI | https://ieeexplore.ieee.org/document/10989469 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl5T0zTN2uPsNjfB4WHCbqNJXtwQt7G1B_3rTdJWURC8hRBIeC_hy8t73xeEblKtJdM8JHlXGBugyIhIHRpiIBFSQMSl1-58nIjRM3-YxbOarO65MADgi88gcE2fy9drVbqnMnvCnVy4SFuoZfdZRdZqqnNoejvOsvFUOGqpjftYHDTDf3yc4nFjeIAmzYxVuchrUBYyUB-_xBj_vaRD1Pmm6OGnL_A5QnuwOkbjPsAG15KpL-TOIpTGvbJYe11WPMjucb8qrVvusL2t4t52u3gvFm_LHFeMXVM_4XXQdDiYZiNS_5VAlmlUEJkCBR1p0NbI1rzdWCrGQpXIHKiRhil7LhmPac5NQm0fxMKACRUTSqokik5Qe7VewSnCPA6VAM5MLm2wlXB7wQPKuzQ3QPMExBnqODPMN5UaxryxwPkf_Rdo33nDZWDC6BK1i20JVxbIC3ntHfgJTrKgbQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDDABoog3HlgTHMdxk7GkLQ20FUOQulV-nKFCtFVJBvj1OC8QSEhsliXL1p1On8--7zuEriKtJdXMc0SHG5ugSN-R2jOOgZBLDj6TpXbneMKHj-xuGkxrsnrJhQGAsvgM3GJY_uXrpcqLpzIb4YVcOI820ZYFfhZUdK2mPodE10kcJykvyKU286OB2yz40TqlRI7BLpo0e1YFIy9unklXffySY_z3ofZQ-5ukhx--4GcfbcDiACU9gBWuRVOfnBuLURp382xZKrPifnyLe1Vx3fwN2_sq7q7Xz-_Z8-tc4Iqza-pHvDZKB_00Hjp1twRnHvmZIyMgoH0N2prZGrgTSEWpp0IpgBhpqLKRSVlABDMhsXMQcAPGU5QrqULfP0StxXIBRwizwFMcGDVC2nQrZPaKB4R1iDBARAj8GLULM8xWlR7GrLHAyR_zl2h7mI5Hs1EyuT9FO4Vniv8Yzz9DrWydw7mF9UxelM78BOT6o7o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+4th+International+Conference+on+Computing+and+Information+Technology+%28ICCIT%29&rft.atitle=Deep+Learning-Based+Automatic+ECG+Diagnosis+for+Arrhythmia+Identification&rft.au=Regaeig%2C+Khalil&rft.au=Amara%2C+Ahmed&rft.au=Boubaker%2C+Khalil&rft.au=Nasraoui%2C+Leila&rft.date=2025-04-13&rft.pub=IEEE&rft.spage=482&rft.epage=486&rft_id=info:doi/10.1109%2FICCIT63348.2025.10989469&rft.externalDocID=10989469 |