A Study to Increase the Performance of FP-Growth Method Using Dimension Tree Technique on Huge Volumes of Data

The dominant ARM algorithms viz. Apriori and FP-growth, needs huge resources when the input data is huge. First algorithm is efficient, but it generates intermediate conditional FP trees. The basic idea of our research is to enhance the rendition of FP-growth technique. Therefore, four techniques vi...

Full description

Saved in:
Bibliographic Details
Published in2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI) Vol. 3; pp. 1 - 5
Main Authors Karthick, T.S., Basha, Murtaza Saadique, Ramya, V., Rajkumar, Yogesh
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.03.2025
Subjects
Online AccessGet full text
DOI10.1109/IATMSI64286.2025.10985060

Cover

Loading…
Abstract The dominant ARM algorithms viz. Apriori and FP-growth, needs huge resources when the input data is huge. First algorithm is efficient, but it generates intermediate conditional FP trees. The basic idea of our research is to enhance the rendition of FP-growth technique. Therefore, four techniques viz. modified FP-growth algorithm using maximal patters and array strategy, modified FP-growth technique with map reduce step, modified FP-tree using pre-large items and dimension tree usage to efficiently erect the FP-tree were studied here. For all the strategies, different support levels are used to test its efficiency. From the experimental results it is clear that FP-tree constructed using dimension tree is highly compact, needs less scan over the database and resourcefully generates FP-growth tree. It is concluded that usage of dimension tree is efficient than traditional algorithms.
AbstractList The dominant ARM algorithms viz. Apriori and FP-growth, needs huge resources when the input data is huge. First algorithm is efficient, but it generates intermediate conditional FP trees. The basic idea of our research is to enhance the rendition of FP-growth technique. Therefore, four techniques viz. modified FP-growth algorithm using maximal patters and array strategy, modified FP-growth technique with map reduce step, modified FP-tree using pre-large items and dimension tree usage to efficiently erect the FP-tree were studied here. For all the strategies, different support levels are used to test its efficiency. From the experimental results it is clear that FP-tree constructed using dimension tree is highly compact, needs less scan over the database and resourcefully generates FP-growth tree. It is concluded that usage of dimension tree is efficient than traditional algorithms.
Author Ramya, V.
Karthick, T.S.
Basha, Murtaza Saadique
Rajkumar, Yogesh
Author_xml – sequence: 1
  givenname: T.S.
  surname: Karthick
  fullname: Karthick, T.S.
  email: karthickshob@gmail.com
  organization: C.Abdul Hakeem College of Engineering and Technology,Department of AIDS,Tamil Nadu,India
– sequence: 2
  givenname: Murtaza Saadique
  surname: Basha
  fullname: Basha, Murtaza Saadique
  email: m.s.sadiq@gmail.com
  organization: C.Abdul Hakeem College of Engineering and Technology,Department of MCA,Tamil Nadu,India
– sequence: 3
  givenname: V.
  surname: Ramya
  fullname: Ramya, V.
  email: vramya11@gmail.com
  organization: Bharathiyar University,Department of Computer Science,Tamil Nadu,India
– sequence: 4
  givenname: Yogesh
  surname: Rajkumar
  fullname: Rajkumar, Yogesh
  email: yogesh.rajkumar@gmail.com
  organization: Bharath Institute of Research and Higher Education,Department of IT,Chennai,India
BookMark eNo1kF1LwzAYRiPohR_7B168_oDOJmna5HJsbitsOFj1dqTNmzWwJtqmyP69E_XqgQPnXDx35NoHj4Q80XRKaaqey1m13Zd5xmQ-ZSkT0wuUIs3TKzJRhZKcU8Forugt8TPYx9GcIQYofdOjHhBii7DD3oa-075BCBaWu2TVh6_YwhZjGwy8Dc4fYeE69IMLHqoeESpsWu8-x4viYT0eEd7Daexw-EksdNQP5Mbq04CTv70n1fKlmq-TzeuqnM82iVM8JnUh6gzRMqMsk5IVUlObpbVSaAvFNc2orkXDlW0YLwyThgttKOe1KJAb5Pfk8TfrEPHw0btO9-fD_wv8G6GNWDs
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IATMSI64286.2025.10985060
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331521691
EndPage 5
ExternalDocumentID 10985060
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-b75b4eef2d9f288278a1f40b99ef793a141ab5c39fc237d28d35ad133b57e3de3
IEDL.DBID RIE
IngestDate Thu Jul 10 06:36:03 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-b75b4eef2d9f288278a1f40b99ef793a141ab5c39fc237d28d35ad133b57e3de3
PageCount 5
ParticipantIDs ieee_primary_10985060
PublicationCentury 2000
PublicationDate 2025-March-6
PublicationDateYYYYMMDD 2025-03-06
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-6
  day: 06
PublicationDecade 2020
PublicationTitle 2025 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI)
PublicationTitleAbbrev IATMSI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9034947
Snippet The dominant ARM algorithms viz. Apriori and FP-growth, needs huge resources when the input data is huge. First algorithm is efficient, but it generates...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms ARM
Arrays
Association rule learning
Dimension Tree
FP-growth
Itemsets
Map Reduce
Maximal Patterns
Performance evaluation
Technological innovation
Title A Study to Increase the Performance of FP-Growth Method Using Dimension Tree Technique on Huge Volumes of Data
URI https://ieeexplore.ieee.org/document/10985060
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60B_GkYsU3I3hNbJNsHsdira3QUjBKb2UfsypCIjU56K93dttYFARvYVk2YYfZmdl83zeMXVLM4KYbKa_DZUAFipGesCjCVCaJNGmCGFqC83gSDx-iuxmfrcjqjguDiA58hr59dP_ydalqe1VGHp5ZgTWq0DepcluStbbYxUo382rUy8f3I5tQW-xBwP1m_o_OKS5wDHbYpHnlEi_y6teV9NXnLzXGf3_TLmuvOXow_Y4-e2wDi31W9MACAz-gKoE83wLOESjFg-maHwClgcHUu6X6u3qGsesgDQ45AH0r9W-vzyBfIELe6LsCjQzrJ4RHd5a92yX6ohJtlg9u8uuht-qo4L1kYeXJhMsI0QQ6MwGl1kkquibqyCxDQ35KRuoKyVWYGRWEiQ5SHXKhqYqVPMFQY3jAWkVZ4CEDFcQ0IQ4l5buRplMz1VEsKbcRShsl8Ii17V7N35aaGfNmm47_GD9h29ZkDt0Vn7JWtajxjMJ9Jc-dmb8AS9isKA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5EQT2pWPHtCl4Tm8fmcSzW2mpTCkbprexjVkVIpCYH_fXObhuLguAtLHmxw-zM7H7fN4RcYMxg2gul02bCxwJFC4cbFGEi4ljoJAYIDME5G0X9h_B2wiYLsrrlwgCABZ-Bay7tWb4qZW22ytDDUyOwhhX6GgZ-5s3pWuvkfKGceTno5Nn9wKTUBn3gM7d54kfvFBs6eltk1Hx0jhh5detKuPLzlx7jv_9qm7SWLD06_o4_O2QFil1SdKiBBn7QqqTo-wZyDhSTPDpeMgRoqWlv7NxgBV4908z2kKYWO0C7RuzfbKDRfAZA80bhleJIv34C-mhXs3fzii6veIvkvev8qu8seio4L2lQOSJmIgTQvkq1j8l1nHBPh22RpqDRU9FMHhdMBqmWfhArP1EB4wrrWMFiCBQEe2S1KAvYJ1T6Ed4QBQIz3lDhupmoMBKY3XCptORwQFpmrqZvc9WMaTNNh3-Mn5GNfp4Np8PB6O6IbBrzWaxXdExWq1kNJxj8K3FqTf4FdHKvcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+International+Conference+on+Interdisciplinary+Approaches+in+Technology+and+Management+for+Social+Innovation+%28IATMSI%29&rft.atitle=A+Study+to+Increase+the+Performance+of+FP-Growth+Method+Using+Dimension+Tree+Technique+on+Huge+Volumes+of+Data&rft.au=Karthick%2C+T.S.&rft.au=Basha%2C+Murtaza+Saadique&rft.au=Ramya%2C+V.&rft.au=Rajkumar%2C+Yogesh&rft.date=2025-03-06&rft.pub=IEEE&rft.volume=3&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FIATMSI64286.2025.10985060&rft.externalDocID=10985060