A Programmable Systolic-Array AI Accelerator System with High-Performance Model Quantization and Heart Disease Classification Algorithm Design
This work introduces a heart disease classification system. The system includes electrocardiography (ECG) arrhythmia classification and phonocardiography (PCG) heart-valve diseases classification algorithm, achieving 97.4% and 99.1% accuracy. Additionally, the paper presents a procedure for lightwei...
Saved in:
Published in | IEEE International Symposium on Circuits and Systems proceedings pp. 1 - 5 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
25.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2158-1525 |
DOI | 10.1109/ISCAS56072.2025.11043735 |
Cover
Abstract | This work introduces a heart disease classification system. The system includes electrocardiography (ECG) arrhythmia classification and phonocardiography (PCG) heart-valve diseases classification algorithm, achieving 97.4% and 99.1% accuracy. Additionally, the paper presents a procedure for lightweight convolutional neural network (CNN) model quantization with an 8-bit fix-point and 0.1% accuracy loss. Furthermore, this study proposes a programmable artificial intelligence (AI) accelerator with an application-specific instruction set processor (ASIP) and systolic array architecture to achieve high-performance computing. Moreover, we introduce a matrix mapping unit (MMU) and the pipeline state register (PSR) to facilitate switching between CNN and matrix multiplication, resulting in a reduction of over 50% in timing overhead. The chip is implemented on Xilinx's PYNQ-Z2 and achieves a power consumption of 106 mW, with a classification latency of 6.8ms / 21ms (arrhythmia/valve diseases). |
---|---|
AbstractList | This work introduces a heart disease classification system. The system includes electrocardiography (ECG) arrhythmia classification and phonocardiography (PCG) heart-valve diseases classification algorithm, achieving 97.4% and 99.1% accuracy. Additionally, the paper presents a procedure for lightweight convolutional neural network (CNN) model quantization with an 8-bit fix-point and 0.1% accuracy loss. Furthermore, this study proposes a programmable artificial intelligence (AI) accelerator with an application-specific instruction set processor (ASIP) and systolic array architecture to achieve high-performance computing. Moreover, we introduce a matrix mapping unit (MMU) and the pipeline state register (PSR) to facilitate switching between CNN and matrix multiplication, resulting in a reduction of over 50% in timing overhead. The chip is implemented on Xilinx's PYNQ-Z2 and achieves a power consumption of 106 mW, with a classification latency of 6.8ms / 21ms (arrhythmia/valve diseases). |
Author | Wang, Kuan-Cheng Lee, Shuenn-Yuh Chen, Ju-Yi Ku, Ming-Yueh |
Author_xml | – sequence: 1 givenname: Kuan-Cheng surname: Wang fullname: Wang, Kuan-Cheng organization: National Cheng-Kung University,Department of Electrical Engineering,Tainan,Taiwan,701 – sequence: 2 givenname: Ming-Yueh surname: Ku fullname: Ku, Ming-Yueh organization: National Cheng-Kung University,Department of Electrical Engineering,Tainan,Taiwan,701 – sequence: 3 givenname: Shuenn-Yuh surname: Lee fullname: Lee, Shuenn-Yuh organization: National Cheng-Kung University,Department of Electrical Engineering,Tainan,Taiwan,701 – sequence: 4 givenname: Ju-Yi surname: Chen fullname: Chen, Ju-Yi organization: National Cheng Kung University Hospital,Department of Internal Medicine,Taiwan |
BookMark | eNo1kEtOwzAURQ0CibZ0Bwy8gZQXO47jYdQCrVREUTuvXpyX1CgfZAehsgjWzKcwutK9R2dwx-yi6ztijMcwi2Mwt6vtPN-qFLSYCRDqp0ykluqMTY02mVQgVZpJOGcjEassipVQV2wcwguAAEjFiH3mfOP72mPbYtEQ3x7D0DfORrn3eOT5iufWUkMeh97_rtTydzcc-NLVh2hDvup9i50l_tiX1PDnN-wG94GD6zuOXcmXhH7gCxcIA_F5gyG4ytkTkDd1779tLV9QcHV3zS4rbAJN_3LCdvd3u_kyWj89rOb5OnJGDhGCMCWKTMeJzAASqymxFgwKLYU1wiqqCk1aFElqVVZJgIJiU1VpmWapBTlhNyetI6L9q3ct-uP-_z75BdF9aRI |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ISCAS56072.2025.11043735 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350356830 |
EISSN | 2158-1525 |
EndPage | 5 |
ExternalDocumentID | 11043735 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Science and Technology funderid: 10.13039/501100003711 |
GroupedDBID | -~X 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i93t-a029da2871438004c7e4cc09a2732c92c5efb7e72b46c58f300be19ff6d686c03 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:38:44 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-a029da2871438004c7e4cc09a2732c92c5efb7e72b46c58f300be19ff6d686c03 |
PageCount | 5 |
ParticipantIDs | ieee_primary_11043735 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-25 |
PublicationDateYYYYMMDD | 2025-05-25 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Symposium on Circuits and Systems proceedings |
PublicationTitleAbbrev | ISCAS |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0020062 |
Score | 2.2917366 |
Snippet | This work introduces a heart disease classification system. The system includes electrocardiography (ECG) arrhythmia classification and phonocardiography (PCG)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Arrhythmia Artificial Intelligence Accelerator Classification algorithms Computational modeling Computer architecture Convolution Neural Network Convolutional neural networks Diseases Electrocardiography Heart valve diseases Phonocardiography Programmable Quantization (signal) Systolic array Systolic arrays |
Title | A Programmable Systolic-Array AI Accelerator System with High-Performance Model Quantization and Heart Disease Classification Algorithm Design |
URI | https://ieeexplore.ieee.org/document/11043735 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVoT3BhK2KXD1ydum7ixMeopWqRqIpapN4q23EQoqQoSg7wEXwzHqdpAQmJWxQ5izxOZsbz3huEbqiUYNiEcB2ExDecEqVtlqKSIKS-ZoK69m33Yz589O_mwXxNVndcGGOMA58ZDw5dLT9Z6RK2ytrWVYEST9BADbvOKrLWJrsCNmAN1aGiPZr24ql15yGwrVjg1df-6KLinMhgH43rx1fYkRevLJSnP34pM_77_Q5Qa8vXw5ONJzpEOyY7QnvfpAaP0WcMIwCK9QpkKQxK5SAJTOI8l-84HuFYa-uCXNUdVzrmGDZpMSBByGTLL8DQPm2JH0prkzWJE8sswUP7zRS4XxV8sGu2CTCkakC8fFrl9m6vuO8gIy00G9zOekOy7sVAnkW3IJIykUjIrkCh3hoxNL7WVEgb_TAtmA5MqkITMuVbo0dpl1JlOiJNecIjrmn3BDWzVWZOEWY86fDQcKl8m4qFOhL2ryFSHkkG4ZY4Qy2Y2cVbpbaxqCf1_I_zF2gXDAwVfRZcomaRl-bKBgqFunYL5Av1gL3x |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG50HtSLv2b8bQ9eYbWDQo9kc2G6LTObyW5LKcUYN2YIHPSP8G-2r4xNTUy8EVJI01d47_V93_cQuiFCgGFji0nXsxzFiBVJnaVEsesRR1JOTPu2_oCFT879xJ0syeqGC6OUMuAzZcOlqeXHC1nAUVlDuypQ4nE30ZZ2_I5b0rVW-RXwASuwDuGN7qgVjLRD94BvRV27evpHHxXjRjp7aFBNoESPvNpFHtny45c2479nuI_qa8YeHq580QHaUOkh2v0mNniEPgMYAWCsOdClMGiVgyiwFWSZeMdBFwdSaidk6u64VDLHcEyLAQtiDdcMAwwN1Gb4sdBWWdI4sUhjHOqvJsftsuSDTbtNACKVA4LZ8yLTb5vjtgGN1NG4czduhdayG4P1wpu5JQjlsYD8CjTqtRk95UhJuNDxD5WcSlclkac8Gjna7H7SJCRStzxJWMx8JknzGNXSRapOEKYsvmWeYiJydDLmSZ_r_wZPmC8oBFz8FNVhZadvpd7GtFrUsz_uX6PtcNzvTXvdwcM52gFjQ32fuheolmeFutRhQx5dmc3yBRD9wT4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Symposium+on+Circuits+and+Systems+proceedings&rft.atitle=A+Programmable+Systolic-Array+AI+Accelerator+System+with+High-Performance+Model+Quantization+and+Heart+Disease+Classification+Algorithm+Design&rft.au=Wang%2C+Kuan-Cheng&rft.au=Ku%2C+Ming-Yueh&rft.au=Lee%2C+Shuenn-Yuh&rft.au=Chen%2C+Ju-Yi&rft.date=2025-05-25&rft.pub=IEEE&rft.eissn=2158-1525&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISCAS56072.2025.11043735&rft.externalDocID=11043735 |