A Programmable Systolic-Array AI Accelerator System with High-Performance Model Quantization and Heart Disease Classification Algorithm Design

This work introduces a heart disease classification system. The system includes electrocardiography (ECG) arrhythmia classification and phonocardiography (PCG) heart-valve diseases classification algorithm, achieving 97.4% and 99.1% accuracy. Additionally, the paper presents a procedure for lightwei...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Symposium on Circuits and Systems proceedings pp. 1 - 5
Main Authors Wang, Kuan-Cheng, Ku, Ming-Yueh, Lee, Shuenn-Yuh, Chen, Ju-Yi
Format Conference Proceeding
LanguageEnglish
Published IEEE 25.05.2025
Subjects
Online AccessGet full text
ISSN2158-1525
DOI10.1109/ISCAS56072.2025.11043735

Cover

Abstract This work introduces a heart disease classification system. The system includes electrocardiography (ECG) arrhythmia classification and phonocardiography (PCG) heart-valve diseases classification algorithm, achieving 97.4% and 99.1% accuracy. Additionally, the paper presents a procedure for lightweight convolutional neural network (CNN) model quantization with an 8-bit fix-point and 0.1% accuracy loss. Furthermore, this study proposes a programmable artificial intelligence (AI) accelerator with an application-specific instruction set processor (ASIP) and systolic array architecture to achieve high-performance computing. Moreover, we introduce a matrix mapping unit (MMU) and the pipeline state register (PSR) to facilitate switching between CNN and matrix multiplication, resulting in a reduction of over 50% in timing overhead. The chip is implemented on Xilinx's PYNQ-Z2 and achieves a power consumption of 106 mW, with a classification latency of 6.8ms / 21ms (arrhythmia/valve diseases).
AbstractList This work introduces a heart disease classification system. The system includes electrocardiography (ECG) arrhythmia classification and phonocardiography (PCG) heart-valve diseases classification algorithm, achieving 97.4% and 99.1% accuracy. Additionally, the paper presents a procedure for lightweight convolutional neural network (CNN) model quantization with an 8-bit fix-point and 0.1% accuracy loss. Furthermore, this study proposes a programmable artificial intelligence (AI) accelerator with an application-specific instruction set processor (ASIP) and systolic array architecture to achieve high-performance computing. Moreover, we introduce a matrix mapping unit (MMU) and the pipeline state register (PSR) to facilitate switching between CNN and matrix multiplication, resulting in a reduction of over 50% in timing overhead. The chip is implemented on Xilinx's PYNQ-Z2 and achieves a power consumption of 106 mW, with a classification latency of 6.8ms / 21ms (arrhythmia/valve diseases).
Author Wang, Kuan-Cheng
Lee, Shuenn-Yuh
Chen, Ju-Yi
Ku, Ming-Yueh
Author_xml – sequence: 1
  givenname: Kuan-Cheng
  surname: Wang
  fullname: Wang, Kuan-Cheng
  organization: National Cheng-Kung University,Department of Electrical Engineering,Tainan,Taiwan,701
– sequence: 2
  givenname: Ming-Yueh
  surname: Ku
  fullname: Ku, Ming-Yueh
  organization: National Cheng-Kung University,Department of Electrical Engineering,Tainan,Taiwan,701
– sequence: 3
  givenname: Shuenn-Yuh
  surname: Lee
  fullname: Lee, Shuenn-Yuh
  organization: National Cheng-Kung University,Department of Electrical Engineering,Tainan,Taiwan,701
– sequence: 4
  givenname: Ju-Yi
  surname: Chen
  fullname: Chen, Ju-Yi
  organization: National Cheng Kung University Hospital,Department of Internal Medicine,Taiwan
BookMark eNo1kEtOwzAURQ0CibZ0Bwy8gZQXO47jYdQCrVREUTuvXpyX1CgfZAehsgjWzKcwutK9R2dwx-yi6ztijMcwi2Mwt6vtPN-qFLSYCRDqp0ykluqMTY02mVQgVZpJOGcjEassipVQV2wcwguAAEjFiH3mfOP72mPbYtEQ3x7D0DfORrn3eOT5iufWUkMeh97_rtTydzcc-NLVh2hDvup9i50l_tiX1PDnN-wG94GD6zuOXcmXhH7gCxcIA_F5gyG4ytkTkDd1779tLV9QcHV3zS4rbAJN_3LCdvd3u_kyWj89rOb5OnJGDhGCMCWKTMeJzAASqymxFgwKLYU1wiqqCk1aFElqVVZJgIJiU1VpmWapBTlhNyetI6L9q3ct-uP-_z75BdF9aRI
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ISCAS56072.2025.11043735
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350356830
EISSN 2158-1525
EndPage 5
ExternalDocumentID 11043735
Genre orig-research
GrantInformation_xml – fundername: Ministry of Science and Technology
  funderid: 10.13039/501100003711
GroupedDBID -~X
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i93t-a029da2871438004c7e4cc09a2732c92c5efb7e72b46c58f300be19ff6d686c03
IEDL.DBID RIE
IngestDate Wed Aug 27 01:38:44 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-a029da2871438004c7e4cc09a2732c92c5efb7e72b46c58f300be19ff6d686c03
PageCount 5
ParticipantIDs ieee_primary_11043735
PublicationCentury 2000
PublicationDate 2025-May-25
PublicationDateYYYYMMDD 2025-05-25
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-25
  day: 25
PublicationDecade 2020
PublicationTitle IEEE International Symposium on Circuits and Systems proceedings
PublicationTitleAbbrev ISCAS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0020062
Score 2.2917366
Snippet This work introduces a heart disease classification system. The system includes electrocardiography (ECG) arrhythmia classification and phonocardiography (PCG)...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Arrhythmia
Artificial Intelligence Accelerator
Classification algorithms
Computational modeling
Computer architecture
Convolution Neural Network
Convolutional neural networks
Diseases
Electrocardiography
Heart valve diseases
Phonocardiography
Programmable
Quantization (signal)
Systolic array
Systolic arrays
Title A Programmable Systolic-Array AI Accelerator System with High-Performance Model Quantization and Heart Disease Classification Algorithm Design
URI https://ieeexplore.ieee.org/document/11043735
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVoT3BhK2KXD1ydum7ixMeopWqRqIpapN4q23EQoqQoSg7wEXwzHqdpAQmJWxQ5izxOZsbz3huEbqiUYNiEcB2ExDecEqVtlqKSIKS-ZoK69m33Yz589O_mwXxNVndcGGOMA58ZDw5dLT9Z6RK2ytrWVYEST9BADbvOKrLWJrsCNmAN1aGiPZr24ql15yGwrVjg1df-6KLinMhgH43rx1fYkRevLJSnP34pM_77_Q5Qa8vXw5ONJzpEOyY7QnvfpAaP0WcMIwCK9QpkKQxK5SAJTOI8l-84HuFYa-uCXNUdVzrmGDZpMSBByGTLL8DQPm2JH0prkzWJE8sswUP7zRS4XxV8sGu2CTCkakC8fFrl9m6vuO8gIy00G9zOekOy7sVAnkW3IJIykUjIrkCh3hoxNL7WVEgb_TAtmA5MqkITMuVbo0dpl1JlOiJNecIjrmn3BDWzVWZOEWY86fDQcKl8m4qFOhL2ryFSHkkG4ZY4Qy2Y2cVbpbaxqCf1_I_zF2gXDAwVfRZcomaRl-bKBgqFunYL5Av1gL3x
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT4MwFG50HtSLv2b8bQ9eYbWDQo9kc2G6LTObyW5LKcUYN2YIHPSP8G-2r4xNTUy8EVJI01d47_V93_cQuiFCgGFji0nXsxzFiBVJnaVEsesRR1JOTPu2_oCFT879xJ0syeqGC6OUMuAzZcOlqeXHC1nAUVlDuypQ4nE30ZZ2_I5b0rVW-RXwASuwDuGN7qgVjLRD94BvRV27evpHHxXjRjp7aFBNoESPvNpFHtny45c2479nuI_qa8YeHq580QHaUOkh2v0mNniEPgMYAWCsOdClMGiVgyiwFWSZeMdBFwdSaidk6u64VDLHcEyLAQtiDdcMAwwN1Gb4sdBWWdI4sUhjHOqvJsftsuSDTbtNACKVA4LZ8yLTb5vjtgGN1NG4czduhdayG4P1wpu5JQjlsYD8CjTqtRk95UhJuNDxD5WcSlclkac8Gjna7H7SJCRStzxJWMx8JknzGNXSRapOEKYsvmWeYiJydDLmSZ_r_wZPmC8oBFz8FNVhZadvpd7GtFrUsz_uX6PtcNzvTXvdwcM52gFjQ32fuheolmeFutRhQx5dmc3yBRD9wT4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Symposium+on+Circuits+and+Systems+proceedings&rft.atitle=A+Programmable+Systolic-Array+AI+Accelerator+System+with+High-Performance+Model+Quantization+and+Heart+Disease+Classification+Algorithm+Design&rft.au=Wang%2C+Kuan-Cheng&rft.au=Ku%2C+Ming-Yueh&rft.au=Lee%2C+Shuenn-Yuh&rft.au=Chen%2C+Ju-Yi&rft.date=2025-05-25&rft.pub=IEEE&rft.eissn=2158-1525&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FISCAS56072.2025.11043735&rft.externalDocID=11043735