FMCW Radar-based Sleep Posture Recognition with Transfer Learning and Range-Aware Dataset
Sleep posture recognition is crucial for understanding sleep quality and diagnosing sleep-related disorders. In this paper, we propose a fine-tuned VGG16 model for classifying four fundamental sleep postures-Supine, Prone, Right side, and Left side-using data collected from Frequency Modulated Conti...
Saved in:
Published in | Smart World Congress (SWC), IEEE pp. 131 - 135 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
02.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2993-396X |
DOI | 10.1109/SWC62898.2024.00052 |
Cover
Abstract | Sleep posture recognition is crucial for understanding sleep quality and diagnosing sleep-related disorders. In this paper, we propose a fine-tuned VGG16 model for classifying four fundamental sleep postures-Supine, Prone, Right side, and Left side-using data collected from Frequency Modulated Continuous Wave (FMCW) radar. Radar signals are processed into range-time images and fed into the deep-learning model for training and classification. We evaluate the impact of varying window sizes, radar distances (1.5, 1.7, and 1.9 meters), and subject independence on the model's performance. Our fine-tuned VGG16 model achieves an average accuracy of over 96% across different distances and demonstrates superior performance compared to a basic CNN. However, the model struggles to generalize to unseen subjects, indicating the need for further research to address subject-dependent challenges. This study highlights the potential of radar-based systems for contactless sleep monitoring and suggests future improvements to enhance model generalization. |
---|---|
AbstractList | Sleep posture recognition is crucial for understanding sleep quality and diagnosing sleep-related disorders. In this paper, we propose a fine-tuned VGG16 model for classifying four fundamental sleep postures-Supine, Prone, Right side, and Left side-using data collected from Frequency Modulated Continuous Wave (FMCW) radar. Radar signals are processed into range-time images and fed into the deep-learning model for training and classification. We evaluate the impact of varying window sizes, radar distances (1.5, 1.7, and 1.9 meters), and subject independence on the model's performance. Our fine-tuned VGG16 model achieves an average accuracy of over 96% across different distances and demonstrates superior performance compared to a basic CNN. However, the model struggles to generalize to unseen subjects, indicating the need for further research to address subject-dependent challenges. This study highlights the potential of radar-based systems for contactless sleep monitoring and suggests future improvements to enhance model generalization. |
Author | Lu, Chang Brahim, Walid Ma, Jianhua Wang, Haotian |
Author_xml | – sequence: 1 givenname: Chang surname: Lu fullname: Lu, Chang email: chang.lu.9t@stu.hosei.ac.jp organization: Hosei University,Graduate School of Computer and Information Sciences,Tokyo,Japan – sequence: 2 givenname: Walid surname: Brahim fullname: Brahim, Walid email: walid.brahim.6g@stu.hosei.ac.jp organization: Hosei University,Graduate School of Computer and Information Sciences,Tokyo,Japan – sequence: 3 givenname: Haotian surname: Wang fullname: Wang, Haotian email: haotian.wang.6g@stu.hosei.ac.jp organization: Hosei University,Graduate School of Computer and Information Sciences,Tokyo,Japan – sequence: 4 givenname: Jianhua surname: Ma fullname: Ma, Jianhua email: jianhua@hosei.ac.jp organization: Hosei University,Graduate School of Computer and Information Sciences,Tokyo,Japan |
BookMark | eNotkEFOwzAQRQ0CiVJyAlj4Ain2jJPayypQQAoCtZEKq8qJJ8WoOJUTVHF7IsHqb95_i3fJzkIXiLFrKWZSCnO73hQ5aKNnIEDNhBAZnLDEzI1GlBkInctTNgFjMEWTv12wpO8_RwwRpNRqwt6Xz8WGr6yzMa1tT46v90QH_tr1w3ckvqKm2wU_-C7wox8-eBVt6FuKvCQbgw87boMbBWFH6eJox8udHUbRcMXOW7vvKfnfKauW91XxmJYvD0_Foky9wSE1JLVzEluUGknYvFGgnK2bzADM6wbnwhioM012xNrMKcpJNbI1qPK60ThlN39aT0TbQ_RfNv5sxzaQCQH4C3IdVOg |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SWC62898.2024.00052 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798331520861 |
EISSN | 2993-396X |
EndPage | 135 |
ExternalDocumentID | 10925002 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-9e18dd13f3183e0a6c424dabc59227bc370992b58eadd1f5d4e6e4c1f9346bc83 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 01:42:10 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-9e18dd13f3183e0a6c424dabc59227bc370992b58eadd1f5d4e6e4c1f9346bc83 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10925002 |
PublicationCentury | 2000 |
PublicationDate | 2024-Dec.-2 |
PublicationDateYYYYMMDD | 2024-12-02 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec.-2 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | Smart World Congress (SWC), IEEE |
PublicationTitleAbbrev | SWC |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003321184 |
Score | 1.8936226 |
Snippet | Sleep posture recognition is crucial for understanding sleep quality and diagnosing sleep-related disorders. In this paper, we propose a fine-tuned VGG16 model... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 131 |
SubjectTerms | Accuracy Data models FMCW radar Frequency modulation Meters Monitoring Radar Radar imaging Radar signal processing range-aware sleep posture Training Transfer learning VGG16 |
Title | FMCW Radar-based Sleep Posture Recognition with Transfer Learning and Range-Aware Dataset |
URI | https://ieeexplore.ieee.org/document/10925002 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA26J5_mZeKdPPiauVyaJY8yHSJsyDbZfBq5fB2idGO0CP56k66dIgi-ldImJcnX03w953wIXRvQXEH0w3OOE8GNITa1jBgtqZEs5drGhP5gKB-exeMsmVVi9VILAwAl-Qza8bD8l--XroipshDhOiB2tI7cDetsI9baJlQ4D3sZJSpnoXDpzXjak2E_EQlcLHpkd6K66EcNlRJC-k00rDvfMEfe2kVu2-7zly_jv59uH7W-1Xr4aYtDB2gHskPUrMs14Cp6j9BLf9Cb4pHxZk0ieHk8fgdY4Vivt1gDHtVcomWGY3oWlzgWesCVCesCm8yHBrIFkNsPE265M3loKG-hSf9-0nsgVWUF8qp5TjRQ5T3laQxo6BjpBBPeWJdoxrrW8W74bmQ2UWGZeZomXoAE4WiquZDWKX6MGtkygxOEQVuVKqkTSIUQnitrlaAqvBe6tuOpPkWtOFLz1cY7Y14P0tkf58_RXpytkjDCLlAjXxdwGWA_t1fldH8BqmCsmQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH_TJr4nf5sHXzDVJs-RRpmPqNmSbbD6NfNwOUboxWgR_vUnXTREE30ppk5L09iS355yL0JUGxSQEPzxrGeFMa2ISQ4lWItKCJkyZkNDv9kT7mT-M43EpVi-0MABQkM-gFg6Lf_luZvOQKvMRrjxiB-vITQ_8PF7KtdYpFcb8bkby0lvIX3w9GDWF31EEChcNLtn1oC_6UUWlAJHWDuqtul9yR95qeWZq9vOXM-O_n28XVb_1evhpjUR7aAPSfbSzKtiAy_g9QC-tbnOE-9rpBQnw5fDgHWCOQ8XefAG4v2ITzVIcErS4QDLfAy5tWKdYp843kE6B3Hxof8utznxDWRUNW3fDZpuUtRXIq2IZURBJ5yKWhJCGuhaWU-60sbGitGEsa_iVIzWx9C-ai5LYcRDAbZQoxoWxkh2iSjpL4QhhUEYmUqgYEs65Y9IYySPpvwwNU3eROkbVMFKT-dI9Y7IapJM_zl-irfaw25l07nuPp2g7zFxBH6FnqJItcjj3i4DMXBRT_wXkG6_m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Smart+World+Congress+%28SWC%29%2C+IEEE&rft.atitle=FMCW+Radar-based+Sleep+Posture+Recognition+with+Transfer+Learning+and+Range-Aware+Dataset&rft.au=Lu%2C+Chang&rft.au=Brahim%2C+Walid&rft.au=Wang%2C+Haotian&rft.au=Ma%2C+Jianhua&rft.date=2024-12-02&rft.pub=IEEE&rft.eissn=2993-396X&rft.spage=131&rft.epage=135&rft_id=info:doi/10.1109%2FSWC62898.2024.00052&rft.externalDocID=10925002 |