FMCW Radar-based Sleep Posture Recognition with Transfer Learning and Range-Aware Dataset

Sleep posture recognition is crucial for understanding sleep quality and diagnosing sleep-related disorders. In this paper, we propose a fine-tuned VGG16 model for classifying four fundamental sleep postures-Supine, Prone, Right side, and Left side-using data collected from Frequency Modulated Conti...

Full description

Saved in:
Bibliographic Details
Published inSmart World Congress (SWC), IEEE pp. 131 - 135
Main Authors Lu, Chang, Brahim, Walid, Wang, Haotian, Ma, Jianhua
Format Conference Proceeding
LanguageEnglish
Published IEEE 02.12.2024
Subjects
Online AccessGet full text
ISSN2993-396X
DOI10.1109/SWC62898.2024.00052

Cover

Abstract Sleep posture recognition is crucial for understanding sleep quality and diagnosing sleep-related disorders. In this paper, we propose a fine-tuned VGG16 model for classifying four fundamental sleep postures-Supine, Prone, Right side, and Left side-using data collected from Frequency Modulated Continuous Wave (FMCW) radar. Radar signals are processed into range-time images and fed into the deep-learning model for training and classification. We evaluate the impact of varying window sizes, radar distances (1.5, 1.7, and 1.9 meters), and subject independence on the model's performance. Our fine-tuned VGG16 model achieves an average accuracy of over 96% across different distances and demonstrates superior performance compared to a basic CNN. However, the model struggles to generalize to unseen subjects, indicating the need for further research to address subject-dependent challenges. This study highlights the potential of radar-based systems for contactless sleep monitoring and suggests future improvements to enhance model generalization.
AbstractList Sleep posture recognition is crucial for understanding sleep quality and diagnosing sleep-related disorders. In this paper, we propose a fine-tuned VGG16 model for classifying four fundamental sleep postures-Supine, Prone, Right side, and Left side-using data collected from Frequency Modulated Continuous Wave (FMCW) radar. Radar signals are processed into range-time images and fed into the deep-learning model for training and classification. We evaluate the impact of varying window sizes, radar distances (1.5, 1.7, and 1.9 meters), and subject independence on the model's performance. Our fine-tuned VGG16 model achieves an average accuracy of over 96% across different distances and demonstrates superior performance compared to a basic CNN. However, the model struggles to generalize to unseen subjects, indicating the need for further research to address subject-dependent challenges. This study highlights the potential of radar-based systems for contactless sleep monitoring and suggests future improvements to enhance model generalization.
Author Lu, Chang
Brahim, Walid
Ma, Jianhua
Wang, Haotian
Author_xml – sequence: 1
  givenname: Chang
  surname: Lu
  fullname: Lu, Chang
  email: chang.lu.9t@stu.hosei.ac.jp
  organization: Hosei University,Graduate School of Computer and Information Sciences,Tokyo,Japan
– sequence: 2
  givenname: Walid
  surname: Brahim
  fullname: Brahim, Walid
  email: walid.brahim.6g@stu.hosei.ac.jp
  organization: Hosei University,Graduate School of Computer and Information Sciences,Tokyo,Japan
– sequence: 3
  givenname: Haotian
  surname: Wang
  fullname: Wang, Haotian
  email: haotian.wang.6g@stu.hosei.ac.jp
  organization: Hosei University,Graduate School of Computer and Information Sciences,Tokyo,Japan
– sequence: 4
  givenname: Jianhua
  surname: Ma
  fullname: Ma, Jianhua
  email: jianhua@hosei.ac.jp
  organization: Hosei University,Graduate School of Computer and Information Sciences,Tokyo,Japan
BookMark eNotkEFOwzAQRQ0CiVJyAlj4Ain2jJPayypQQAoCtZEKq8qJJ8WoOJUTVHF7IsHqb95_i3fJzkIXiLFrKWZSCnO73hQ5aKNnIEDNhBAZnLDEzI1GlBkInctTNgFjMEWTv12wpO8_RwwRpNRqwt6Xz8WGr6yzMa1tT46v90QH_tr1w3ckvqKm2wU_-C7wox8-eBVt6FuKvCQbgw87boMbBWFH6eJox8udHUbRcMXOW7vvKfnfKauW91XxmJYvD0_Foky9wSE1JLVzEluUGknYvFGgnK2bzADM6wbnwhioM012xNrMKcpJNbI1qPK60ThlN39aT0TbQ_RfNv5sxzaQCQH4C3IdVOg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SWC62898.2024.00052
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331520861
EISSN 2993-396X
EndPage 135
ExternalDocumentID 10925002
Genre orig-research
GroupedDBID 6IE
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-9e18dd13f3183e0a6c424dabc59227bc370992b58eadd1f5d4e6e4c1f9346bc83
IEDL.DBID RIE
IngestDate Wed Aug 27 01:42:10 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-9e18dd13f3183e0a6c424dabc59227bc370992b58eadd1f5d4e6e4c1f9346bc83
PageCount 5
ParticipantIDs ieee_primary_10925002
PublicationCentury 2000
PublicationDate 2024-Dec.-2
PublicationDateYYYYMMDD 2024-12-02
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec.-2
  day: 02
PublicationDecade 2020
PublicationTitle Smart World Congress (SWC), IEEE
PublicationTitleAbbrev SWC
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003321184
Score 1.8936226
Snippet Sleep posture recognition is crucial for understanding sleep quality and diagnosing sleep-related disorders. In this paper, we propose a fine-tuned VGG16 model...
SourceID ieee
SourceType Publisher
StartPage 131
SubjectTerms Accuracy
Data models
FMCW radar
Frequency modulation
Meters
Monitoring
Radar
Radar imaging
Radar signal processing
range-aware
sleep posture
Training
Transfer learning
VGG16
Title FMCW Radar-based Sleep Posture Recognition with Transfer Learning and Range-Aware Dataset
URI https://ieeexplore.ieee.org/document/10925002
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA26J5_mZeKdPPiauVyaJY8yHSJsyDbZfBq5fB2idGO0CP56k66dIgi-ldImJcnX03w953wIXRvQXEH0w3OOE8GNITa1jBgtqZEs5drGhP5gKB-exeMsmVVi9VILAwAl-Qza8bD8l--XroipshDhOiB2tI7cDetsI9baJlQ4D3sZJSpnoXDpzXjak2E_EQlcLHpkd6K66EcNlRJC-k00rDvfMEfe2kVu2-7zly_jv59uH7W-1Xr4aYtDB2gHskPUrMs14Cp6j9BLf9Cb4pHxZk0ieHk8fgdY4Vivt1gDHtVcomWGY3oWlzgWesCVCesCm8yHBrIFkNsPE265M3loKG-hSf9-0nsgVWUF8qp5TjRQ5T3laQxo6BjpBBPeWJdoxrrW8W74bmQ2UWGZeZomXoAE4WiquZDWKX6MGtkygxOEQVuVKqkTSIUQnitrlaAqvBe6tuOpPkWtOFLz1cY7Y14P0tkf58_RXpytkjDCLlAjXxdwGWA_t1fldH8BqmCsmQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA0yH_TJr4nf5sHXzDVJs-RRpmPqNmSbbD6NfNwOUboxWgR_vUnXTREE30ppk5L09iS355yL0JUGxSQEPzxrGeFMa2ISQ4lWItKCJkyZkNDv9kT7mT-M43EpVi-0MABQkM-gFg6Lf_luZvOQKvMRrjxiB-vITQ_8PF7KtdYpFcb8bkby0lvIX3w9GDWF31EEChcNLtn1oC_6UUWlAJHWDuqtul9yR95qeWZq9vOXM-O_n28XVb_1evhpjUR7aAPSfbSzKtiAy_g9QC-tbnOE-9rpBQnw5fDgHWCOQ8XefAG4v2ITzVIcErS4QDLfAy5tWKdYp843kE6B3Hxof8utznxDWRUNW3fDZpuUtRXIq2IZURBJ5yKWhJCGuhaWU-60sbGitGEsa_iVIzWx9C-ai5LYcRDAbZQoxoWxkh2iSjpL4QhhUEYmUqgYEs65Y9IYySPpvwwNU3eROkbVMFKT-dI9Y7IapJM_zl-irfaw25l07nuPp2g7zFxBH6FnqJItcjj3i4DMXBRT_wXkG6_m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Smart+World+Congress+%28SWC%29%2C+IEEE&rft.atitle=FMCW+Radar-based+Sleep+Posture+Recognition+with+Transfer+Learning+and+Range-Aware+Dataset&rft.au=Lu%2C+Chang&rft.au=Brahim%2C+Walid&rft.au=Wang%2C+Haotian&rft.au=Ma%2C+Jianhua&rft.date=2024-12-02&rft.pub=IEEE&rft.eissn=2993-396X&rft.spage=131&rft.epage=135&rft_id=info:doi/10.1109%2FSWC62898.2024.00052&rft.externalDocID=10925002