Neural Network-Based Self-Calibrating Control for Advanced Oxygen Supply Systems
The oxygen supply system (OSS) is characterized by its compact size, high airtightness, and rapid pressure adjustment capabilities, necessitating advanced control performance in oxygen regulators. Unlike traditional controllers with fixed parameters, this study presents a neural network-based self-c...
Saved in:
Published in | Chinese Control and Decision Conference pp. 3575 - 3580 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1948-9447 |
DOI | 10.1109/CCDC65474.2025.11090443 |
Cover
Loading…
Abstract | The oxygen supply system (OSS) is characterized by its compact size, high airtightness, and rapid pressure adjustment capabilities, necessitating advanced control performance in oxygen regulators. Unlike traditional controllers with fixed parameters, this study presents a neural network-based self-calibrating controller that dynamically optimizes control parameters in response to system states. The structural design and operating principles of the OSS are systematically detailed, followed by the development of a nonlinear mathematical model derived through mechanistic analysis. Leveraging this model, the proposed controller employs real-time feedback of differential pressure between the interior and exterior of the oxygen mask, with online weight updates using a backpropagation algorithm. This approach effectively addresses challenges such as environmental uncertainties and variations in system characteristics. To evaluate performance, respiratory patterns under various scenarios-modulating respiratory rates and tidal volumes-are mathematically simulated. Beyond its primary application, the system demonstrates potential for broader adoption in civilian domains, including medical ventilators and high-altitude exploration, ensuring reliable oxygen delivery across diverse environments. |
---|---|
AbstractList | The oxygen supply system (OSS) is characterized by its compact size, high airtightness, and rapid pressure adjustment capabilities, necessitating advanced control performance in oxygen regulators. Unlike traditional controllers with fixed parameters, this study presents a neural network-based self-calibrating controller that dynamically optimizes control parameters in response to system states. The structural design and operating principles of the OSS are systematically detailed, followed by the development of a nonlinear mathematical model derived through mechanistic analysis. Leveraging this model, the proposed controller employs real-time feedback of differential pressure between the interior and exterior of the oxygen mask, with online weight updates using a backpropagation algorithm. This approach effectively addresses challenges such as environmental uncertainties and variations in system characteristics. To evaluate performance, respiratory patterns under various scenarios-modulating respiratory rates and tidal volumes-are mathematically simulated. Beyond its primary application, the system demonstrates potential for broader adoption in civilian domains, including medical ventilators and high-altitude exploration, ensuring reliable oxygen delivery across diverse environments. |
Author | Yang, Jinshan Sun, Qinglin Sun, Hao Tan, Panlong |
Author_xml | – sequence: 1 givenname: Jinshan surname: Yang fullname: Yang, Jinshan email: yangjs@mail.nankai.edu.cn organization: College of Artificial Intelligence, Nankai University,Tianjin,China – sequence: 2 givenname: Qinglin surname: Sun fullname: Sun, Qinglin email: sunql@nankai.edu.cn organization: College of Artificial Intelligence, Nankai University,Tianjin,China – sequence: 3 givenname: Panlong surname: Tan fullname: Tan, Panlong email: tanpl@nankai.edu.cn organization: Haihe Lab of ITAI,Tianjin,China – sequence: 4 givenname: Hao surname: Sun fullname: Sun, Hao email: sunh@nankai.edu.cn organization: College of Artificial Intelligence, Nankai University,Tianjin,China |
BookMark | eNo1kNtKw0AURUdRsK39A8H5gdQztyTzWMcrlFZo38uZ5EyJpkmZpGr-XvHytGGxWA97zM6atiHGrgXMhAB749ydS43O9EyCND8MtFYnbGozmysljACTmlM2ElbnidU6u2DjrnsFSFMFMGIvSzpGrPmS-o82viW32FHJ11SHxGFd-Yh91ey4a5s-tjUPbeTz8h2b4ttafQ47avj6eDjUA18PXU_77pKdB6w7mv7thG0e7jfuKVmsHp_dfJFUVvWJLXVpRKCQafRUaiMDhhyVhwJ9Kb0Ar6T0KhgbQpEXIJTwSGByiVbaoCbs6jdbEdH2EKs9xmH7f4D6Av0-U0I |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CCDC65474.2025.11090443 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331510565 |
EISSN | 1948-9447 |
EndPage | 3580 |
ExternalDocumentID | 11090443 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 6247021530,61973172,62103204,62003175,61973175 funderid: 10.13039/501100001809 |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-9d4d51fef74abed452faf8a3b0cabd2b10b322b3f59ffc8c0131bae0582a929f3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:00:35 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-9d4d51fef74abed452faf8a3b0cabd2b10b322b3f59ffc8c0131bae0582a929f3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_11090443 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-16 |
PublicationDateYYYYMMDD | 2025-05-16 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Chinese Control and Decision Conference |
PublicationTitleAbbrev | CCDC |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0066300 |
Score | 1.9114015 |
Snippet | The oxygen supply system (OSS) is characterized by its compact size, high airtightness, and rapid pressure adjustment capabilities, necessitating advanced... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3575 |
SubjectTerms | Control systems Mathematical models Neural Networks Optimization Oxygen Oxygen Mask Pressure Regulation Real-Time Optimization Real-time systems Regulation Regulators Robustness Uncertainty Ventilators |
Title | Neural Network-Based Self-Calibrating Control for Advanced Oxygen Supply Systems |
URI | https://ieeexplore.ieee.org/document/11090443 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7Wk17cKu7k4DXTmWQyTY46WopgLViht5JVxDIVmYL115s3ixsI3oYhYYZs77287_seQuexYlmiTfDchJEkHHicyL6XhAXnnorgoSYKAsXbUTZ8SG-mfNqQ1SsujHOuAp-5CB6rXL5dmCVclfVAHTNOU9ZBnRC51WSt9tjNQDuqAXCFZr08v8qhsC7cm1AetV1_FFGpbMhgC43ar9fQkedoWerIvP8SZvz3722j7hddD48_DdEOWnPFLtr8pjS4h8YgwqHmeFSjvsllMF4W37u5J8DO0rAOikec18B1HDxZfNGgA_Dd2yqsMlzV_1zhRuK8iyaD60k-JE0xBfIkWUmkTS1PvPP9VGlnU0698kIxHRulLdVJrMPW1sxz6b0RBmR4tHIxF1QFD8qzfbReLAp3gDC0ESz09CpEZ1QJnQpFMy0ZZEkze4i6MDazl1ouY9YOy9Ef74_RBkwRpOST7AStl69LdxosfanPqhn-AN6Pp7w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H9QXbxPv5sHXdG2TdsmjVsfUrQ6csLeRtImIoxNpwfnrzenFGwi-hZLQkNs5yfm-7yB05koaeiqxnhtPBLEHXkBE1whCrXPvc-uhehIuisM47D-wm0kwqcnqJRdGa12Cz7QDxTKWn86TAp7KOqCO6TJGl9GKNfxMVHSt5uANQT2qhnDZip0ouowgtS68nPiB0zT-kUaltCK9DRQ3_6_AI89OkSsnef8lzfjvDm6i9hdhD48-TdEWWtLZNlr_pjW4g0YgwyFnOK5w3-TCmq8U3-uZIcDPUrASskccVdB1bH1ZfF7jA_Dd28KuM1xmAF3gWuS8jca9q3HUJ3U6BfIkaE5EytLAM9p0mVQ6ZYFvpOGSKjeRKvWV5yq7uRU1gTAm4QkI8Sip3YD70vpQhu6iVjbP9B7CUIdT29JIez_zJVeMSz9UgkKcNEz3URvGZvpSCWZMm2E5-OP7KVrtj4eD6eA6vj1EazBdEKD3wiPUyl8LfWztfq5Oytn-ANuyqww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Neural+Network-Based+Self-Calibrating+Control+for+Advanced+Oxygen+Supply+Systems&rft.au=Yang%2C+Jinshan&rft.au=Sun%2C+Qinglin&rft.au=Tan%2C+Panlong&rft.au=Sun%2C+Hao&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=3575&rft.epage=3580&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090443&rft.externalDocID=11090443 |