Neural Network-Based Self-Calibrating Control for Advanced Oxygen Supply Systems

The oxygen supply system (OSS) is characterized by its compact size, high airtightness, and rapid pressure adjustment capabilities, necessitating advanced control performance in oxygen regulators. Unlike traditional controllers with fixed parameters, this study presents a neural network-based self-c...

Full description

Saved in:
Bibliographic Details
Published inChinese Control and Decision Conference pp. 3575 - 3580
Main Authors Yang, Jinshan, Sun, Qinglin, Tan, Panlong, Sun, Hao
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.05.2025
Subjects
Online AccessGet full text
ISSN1948-9447
DOI10.1109/CCDC65474.2025.11090443

Cover

Loading…
Abstract The oxygen supply system (OSS) is characterized by its compact size, high airtightness, and rapid pressure adjustment capabilities, necessitating advanced control performance in oxygen regulators. Unlike traditional controllers with fixed parameters, this study presents a neural network-based self-calibrating controller that dynamically optimizes control parameters in response to system states. The structural design and operating principles of the OSS are systematically detailed, followed by the development of a nonlinear mathematical model derived through mechanistic analysis. Leveraging this model, the proposed controller employs real-time feedback of differential pressure between the interior and exterior of the oxygen mask, with online weight updates using a backpropagation algorithm. This approach effectively addresses challenges such as environmental uncertainties and variations in system characteristics. To evaluate performance, respiratory patterns under various scenarios-modulating respiratory rates and tidal volumes-are mathematically simulated. Beyond its primary application, the system demonstrates potential for broader adoption in civilian domains, including medical ventilators and high-altitude exploration, ensuring reliable oxygen delivery across diverse environments.
AbstractList The oxygen supply system (OSS) is characterized by its compact size, high airtightness, and rapid pressure adjustment capabilities, necessitating advanced control performance in oxygen regulators. Unlike traditional controllers with fixed parameters, this study presents a neural network-based self-calibrating controller that dynamically optimizes control parameters in response to system states. The structural design and operating principles of the OSS are systematically detailed, followed by the development of a nonlinear mathematical model derived through mechanistic analysis. Leveraging this model, the proposed controller employs real-time feedback of differential pressure between the interior and exterior of the oxygen mask, with online weight updates using a backpropagation algorithm. This approach effectively addresses challenges such as environmental uncertainties and variations in system characteristics. To evaluate performance, respiratory patterns under various scenarios-modulating respiratory rates and tidal volumes-are mathematically simulated. Beyond its primary application, the system demonstrates potential for broader adoption in civilian domains, including medical ventilators and high-altitude exploration, ensuring reliable oxygen delivery across diverse environments.
Author Yang, Jinshan
Sun, Qinglin
Sun, Hao
Tan, Panlong
Author_xml – sequence: 1
  givenname: Jinshan
  surname: Yang
  fullname: Yang, Jinshan
  email: yangjs@mail.nankai.edu.cn
  organization: College of Artificial Intelligence, Nankai University,Tianjin,China
– sequence: 2
  givenname: Qinglin
  surname: Sun
  fullname: Sun, Qinglin
  email: sunql@nankai.edu.cn
  organization: College of Artificial Intelligence, Nankai University,Tianjin,China
– sequence: 3
  givenname: Panlong
  surname: Tan
  fullname: Tan, Panlong
  email: tanpl@nankai.edu.cn
  organization: Haihe Lab of ITAI,Tianjin,China
– sequence: 4
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  email: sunh@nankai.edu.cn
  organization: College of Artificial Intelligence, Nankai University,Tianjin,China
BookMark eNo1kNtKw0AURUdRsK39A8H5gdQztyTzWMcrlFZo38uZ5EyJpkmZpGr-XvHytGGxWA97zM6atiHGrgXMhAB749ydS43O9EyCND8MtFYnbGozmysljACTmlM2ElbnidU6u2DjrnsFSFMFMGIvSzpGrPmS-o82viW32FHJ11SHxGFd-Yh91ey4a5s-tjUPbeTz8h2b4ttafQ47avj6eDjUA18PXU_77pKdB6w7mv7thG0e7jfuKVmsHp_dfJFUVvWJLXVpRKCQafRUaiMDhhyVhwJ9Kb0Ar6T0KhgbQpEXIJTwSGByiVbaoCbs6jdbEdH2EKs9xmH7f4D6Av0-U0I
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC65474.2025.11090443
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331510565
EISSN 1948-9447
EndPage 3580
ExternalDocumentID 11090443
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 6247021530,61973172,62103204,62003175,61973175
  funderid: 10.13039/501100001809
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-9d4d51fef74abed452faf8a3b0cabd2b10b322b3f59ffc8c0131bae0582a929f3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:35 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-9d4d51fef74abed452faf8a3b0cabd2b10b322b3f59ffc8c0131bae0582a929f3
PageCount 6
ParticipantIDs ieee_primary_11090443
PublicationCentury 2000
PublicationDate 2025-May-16
PublicationDateYYYYMMDD 2025-05-16
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-16
  day: 16
PublicationDecade 2020
PublicationTitle Chinese Control and Decision Conference
PublicationTitleAbbrev CCDC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.9114015
Snippet The oxygen supply system (OSS) is characterized by its compact size, high airtightness, and rapid pressure adjustment capabilities, necessitating advanced...
SourceID ieee
SourceType Publisher
StartPage 3575
SubjectTerms Control systems
Mathematical models
Neural Networks
Optimization
Oxygen
Oxygen Mask
Pressure Regulation
Real-Time Optimization
Real-time systems
Regulation
Regulators
Robustness
Uncertainty
Ventilators
Title Neural Network-Based Self-Calibrating Control for Advanced Oxygen Supply Systems
URI https://ieeexplore.ieee.org/document/11090443
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA7Wk17cKu7k4DXTmWQyTY46WopgLViht5JVxDIVmYL115s3ixsI3oYhYYZs77287_seQuexYlmiTfDchJEkHHicyL6XhAXnnorgoSYKAsXbUTZ8SG-mfNqQ1SsujHOuAp-5CB6rXL5dmCVclfVAHTNOU9ZBnRC51WSt9tjNQDuqAXCFZr08v8qhsC7cm1AetV1_FFGpbMhgC43ar9fQkedoWerIvP8SZvz3722j7hddD48_DdEOWnPFLtr8pjS4h8YgwqHmeFSjvsllMF4W37u5J8DO0rAOikec18B1HDxZfNGgA_Dd2yqsMlzV_1zhRuK8iyaD60k-JE0xBfIkWUmkTS1PvPP9VGlnU0698kIxHRulLdVJrMPW1sxz6b0RBmR4tHIxF1QFD8qzfbReLAp3gDC0ESz09CpEZ1QJnQpFMy0ZZEkze4i6MDazl1ouY9YOy9Ef74_RBkwRpOST7AStl69LdxosfanPqhn-AN6Pp7w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46H9QXbxPv5sHXdG2TdsmjVsfUrQ6csLeRtImIoxNpwfnrzenFGwi-hZLQkNs5yfm-7yB05koaeiqxnhtPBLEHXkBE1whCrXPvc-uhehIuisM47D-wm0kwqcnqJRdGa12Cz7QDxTKWn86TAp7KOqCO6TJGl9GKNfxMVHSt5uANQT2qhnDZip0ouowgtS68nPiB0zT-kUaltCK9DRQ3_6_AI89OkSsnef8lzfjvDm6i9hdhD48-TdEWWtLZNlr_pjW4g0YgwyFnOK5w3-TCmq8U3-uZIcDPUrASskccVdB1bH1ZfF7jA_Dd28KuM1xmAF3gWuS8jca9q3HUJ3U6BfIkaE5EytLAM9p0mVQ6ZYFvpOGSKjeRKvWV5yq7uRU1gTAm4QkI8Sip3YD70vpQhu6iVjbP9B7CUIdT29JIez_zJVeMSz9UgkKcNEz3URvGZvpSCWZMm2E5-OP7KVrtj4eD6eA6vj1EazBdEKD3wiPUyl8LfWztfq5Oytn-ANuyqww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Neural+Network-Based+Self-Calibrating+Control+for+Advanced+Oxygen+Supply+Systems&rft.au=Yang%2C+Jinshan&rft.au=Sun%2C+Qinglin&rft.au=Tan%2C+Panlong&rft.au=Sun%2C+Hao&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=3575&rft.epage=3580&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090443&rft.externalDocID=11090443