EEG-Based Identification of Native and Non-Native Language Perception Using Deep Learning
This work classifies the identification of native and non-native language speakers using the electroencephalogram (EEG) signals and Deep Learning techniques in native and non-native musical songs. The EEG based dataset is recorded from 20 different subjects in experiments of native and non-native la...
Saved in:
Published in | International Conference on Communication Technologies (Online) pp. 1 - 6 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
23.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2996-3621 |
DOI | 10.1109/ComTech65062.2025.11034481 |
Cover
Loading…
Abstract | This work classifies the identification of native and non-native language speakers using the electroencephalogram (EEG) signals and Deep Learning techniques in native and non-native musical songs. The EEG based dataset is recorded from 20 different subjects in experiments of native and non-native language stimuli, using two different modalities (a) in-ear headphones, and (b) bone-conducting headphones. For the Classification of native and non-native speakers on EEG responses, deep learning models including Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), CNN-LSTM, Bidirectional LSTM, and Dense Neural Network (DNN) are implemented. Experimental results demonstrate that the Bidirectional-LSTM model achieved the highest accuracy (98%). This high accuracy validates the usefulness of the proposed system in real world applications, such as by intelligence agencies, to accurately identify understandable communication means of suspects under investigation. |
---|---|
AbstractList | This work classifies the identification of native and non-native language speakers using the electroencephalogram (EEG) signals and Deep Learning techniques in native and non-native musical songs. The EEG based dataset is recorded from 20 different subjects in experiments of native and non-native language stimuli, using two different modalities (a) in-ear headphones, and (b) bone-conducting headphones. For the Classification of native and non-native speakers on EEG responses, deep learning models including Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), CNN-LSTM, Bidirectional LSTM, and Dense Neural Network (DNN) are implemented. Experimental results demonstrate that the Bidirectional-LSTM model achieved the highest accuracy (98%). This high accuracy validates the usefulness of the proposed system in real world applications, such as by intelligence agencies, to accurately identify understandable communication means of suspects under investigation. |
Author | Hussain, Muhammad Abid Usman, Imran |
Author_xml | – sequence: 1 givenname: Muhammad Abid surname: Hussain fullname: Hussain, Muhammad Abid email: abidmaharvi@hotmail.com organization: National University of Sciences & Technology (NUST),Dept. of Computer Science,Islamabad,Pakistan – sequence: 2 givenname: Imran surname: Usman fullname: Usman, Imran email: imran.usman@nbc.nust.edu.pk organization: National University of Sciences & Technology (NUST),Dept. of Computer Science,Islamabad,Pakistan |
BookMark | eNo1kM1OwzAQhA0CiVLyBhws7i7-Sez4CCGUSlFBohw4VY69DkbUiZJQibcnQLnMzDda7WHO0UlsIyB0xeiCMaqvi3a3AfsmMyr5glOe_dQiTXN2hBKtdC4Ey1g26TGaca0lEZKzM5QMwzulVLBcMyVm6LUsl-TWDODwykEcgw_WjKGNuPV4PaU9YBMdXreRHLAysfk0DeAn6C10v8cvQ4gNvgPocAWmjxNdoFNvPgZIDj5Hz_flpngg1eNyVdxUJGgxEl1zn2pttctqzxVYA8ZK5x1LPbW0NrmQTk8EUFOvZM2sosJbwaVikos5uvz7GgBg2_VhZ_qv7f8W4hvLIlcu |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ComTech65062.2025.11034481 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Music |
EISBN | 9798331515331 |
EISSN | 2996-3621 |
EndPage | 6 |
ExternalDocumentID | 11034481 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-9b2f499c9d5bf27ecaeac6dfd14f0c0ba836d9d14eeb0f76b1c703fc32671623 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 25 06:00:26 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-9b2f499c9d5bf27ecaeac6dfd14f0c0ba836d9d14eeb0f76b1c703fc32671623 |
PageCount | 6 |
ParticipantIDs | ieee_primary_11034481 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-23 |
PublicationDateYYYYMMDD | 2025-04-23 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Communication Technologies (Online) |
PublicationTitleAbbrev | ComTech |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003189173 |
Score | 1.9088228 |
Snippet | This work classifies the identification of native and non-native language speakers using the electroencephalogram (EEG) signals and Deep Learning techniques in... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Bidirectional long short term memory Bidirectional LSTM Brain modeling CNN-LSTM Communications technology Convolutional neural networks Deep learning DNN EEG Electroencephalography GRU Headphones LSTM Music native language Neural networks non-native language |
Title | EEG-Based Identification of Native and Non-Native Language Perception Using Deep Learning |
URI | https://ieeexplore.ieee.org/document/11034481 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aL558VXyTg9dst5vdbXJVW4voUlChnkoeExFht8juxV_vJLutKAheQpJDCJkkk5nM9w0hl9bgMUqdZMLEhqVWAROJxUJluTRpEpvYA4Ufinz6nN7Ns3kHVg9YGAAIwWcQ-Wr4y7eVabyrbICqiqM5gcbOJu6zFqy1dqjg5kTTg3fEosNYDvBEef80vkFyD7lKsmg1wI9UKkGTTHZIsZpDG0DyHjW1jsznL3rGf09yl_S_QXt0tlZHe2QDyn2yFfI4H5CX8fiWXaHGsrSF5rrOV0crR4tA_k1VaWlRlaxr3neeTDpbx77QEGBAbwCWtCNmfe2Tx8n46XrKuqwK7E3ymkmdOLRyjLSZdskIjMKrN7fODlOHgtFK8NxKbAHo2I1yPTR4KTiDzzxPNsUPSa-sSjgiFHLpuI2tyKRIM3AaRxBKSCWMkTpOj0nfr85i2dJmLFYLc_JH_ynZ9kLyXzUJPyO9-qOBc9T4tb4Ikv4CQDqrhw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7iDnry18Tf5uA1XdemXXJVN6duZeCEeRpN8iIitEO6i3-9L2k3URC8lKaHEPKafHkv7_seIVdG4zLiVjKhQ824yYGJyOAjT1KpeRTq0BGFx1k6fOYPs2TWkNU9FwYAfPIZBO7V3-WbUi9dqKyDUBWjO4HOTguBnyc1XWsdUsHfE52PuJEW7Yayg2vKRajxFJI60lWUBKsufhRT8Vgy2CHZahR1Csl7sKxUoD9_CTT-e5i7pP1N26OTNSDtkQ0o9knLV3I-IC_9_h27RswytCbn2iZaR0tLMy__TfPC0KwsWNMcNbFMOllnv1CfYkBvARa0kWZ9bZOnQX96M2RNXQX2JuOKSRVZ9HO0NImyUQ90jptvaqzpcoumUbmIUyOxBaBC20tVV-O2YDUe9JzcVHxINouygCNCIZU2NqERiRQ8AauwB5ELmQutpQr5MWm72ZkvauGM-WpiTv74fkm2htPxaD66zx5PybYzmLu4ieIzsll9LOEc8b9SF97qX2sUrtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Communication+Technologies+%28Online%29&rft.atitle=EEG-Based+Identification+of+Native+and+Non-Native+Language+Perception+Using+Deep+Learning&rft.au=Hussain%2C+Muhammad+Abid&rft.au=Usman%2C+Imran&rft.date=2025-04-23&rft.pub=IEEE&rft.eissn=2996-3621&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FComTech65062.2025.11034481&rft.externalDocID=11034481 |