EEG-Based Identification of Native and Non-Native Language Perception Using Deep Learning

This work classifies the identification of native and non-native language speakers using the electroencephalogram (EEG) signals and Deep Learning techniques in native and non-native musical songs. The EEG based dataset is recorded from 20 different subjects in experiments of native and non-native la...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Communication Technologies (Online) pp. 1 - 6
Main Authors Hussain, Muhammad Abid, Usman, Imran
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.04.2025
Subjects
Online AccessGet full text
ISSN2996-3621
DOI10.1109/ComTech65062.2025.11034481

Cover

Loading…
Abstract This work classifies the identification of native and non-native language speakers using the electroencephalogram (EEG) signals and Deep Learning techniques in native and non-native musical songs. The EEG based dataset is recorded from 20 different subjects in experiments of native and non-native language stimuli, using two different modalities (a) in-ear headphones, and (b) bone-conducting headphones. For the Classification of native and non-native speakers on EEG responses, deep learning models including Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), CNN-LSTM, Bidirectional LSTM, and Dense Neural Network (DNN) are implemented. Experimental results demonstrate that the Bidirectional-LSTM model achieved the highest accuracy (98%). This high accuracy validates the usefulness of the proposed system in real world applications, such as by intelligence agencies, to accurately identify understandable communication means of suspects under investigation.
AbstractList This work classifies the identification of native and non-native language speakers using the electroencephalogram (EEG) signals and Deep Learning techniques in native and non-native musical songs. The EEG based dataset is recorded from 20 different subjects in experiments of native and non-native language stimuli, using two different modalities (a) in-ear headphones, and (b) bone-conducting headphones. For the Classification of native and non-native speakers on EEG responses, deep learning models including Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU), CNN-LSTM, Bidirectional LSTM, and Dense Neural Network (DNN) are implemented. Experimental results demonstrate that the Bidirectional-LSTM model achieved the highest accuracy (98%). This high accuracy validates the usefulness of the proposed system in real world applications, such as by intelligence agencies, to accurately identify understandable communication means of suspects under investigation.
Author Hussain, Muhammad Abid
Usman, Imran
Author_xml – sequence: 1
  givenname: Muhammad Abid
  surname: Hussain
  fullname: Hussain, Muhammad Abid
  email: abidmaharvi@hotmail.com
  organization: National University of Sciences & Technology (NUST),Dept. of Computer Science,Islamabad,Pakistan
– sequence: 2
  givenname: Imran
  surname: Usman
  fullname: Usman, Imran
  email: imran.usman@nbc.nust.edu.pk
  organization: National University of Sciences & Technology (NUST),Dept. of Computer Science,Islamabad,Pakistan
BookMark eNo1kM1OwzAQhA0CiVLyBhws7i7-Sez4CCGUSlFBohw4VY69DkbUiZJQibcnQLnMzDda7WHO0UlsIyB0xeiCMaqvi3a3AfsmMyr5glOe_dQiTXN2hBKtdC4Ey1g26TGaca0lEZKzM5QMwzulVLBcMyVm6LUsl-TWDODwykEcgw_WjKGNuPV4PaU9YBMdXreRHLAysfk0DeAn6C10v8cvQ4gNvgPocAWmjxNdoFNvPgZIDj5Hz_flpngg1eNyVdxUJGgxEl1zn2pttctqzxVYA8ZK5x1LPbW0NrmQTk8EUFOvZM2sosJbwaVikos5uvz7GgBg2_VhZ_qv7f8W4hvLIlcu
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ComTech65062.2025.11034481
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Music
EISBN 9798331515331
EISSN 2996-3621
EndPage 6
ExternalDocumentID 11034481
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-9b2f499c9d5bf27ecaeac6dfd14f0c0ba836d9d14eeb0f76b1c703fc32671623
IEDL.DBID RIE
IngestDate Wed Jun 25 06:00:26 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-9b2f499c9d5bf27ecaeac6dfd14f0c0ba836d9d14eeb0f76b1c703fc32671623
PageCount 6
ParticipantIDs ieee_primary_11034481
PublicationCentury 2000
PublicationDate 2025-April-23
PublicationDateYYYYMMDD 2025-04-23
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-23
  day: 23
PublicationDecade 2020
PublicationTitle International Conference on Communication Technologies (Online)
PublicationTitleAbbrev ComTech
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189173
Score 1.9088228
Snippet This work classifies the identification of native and non-native language speakers using the electroencephalogram (EEG) signals and Deep Learning techniques in...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Bidirectional long short term memory
Bidirectional LSTM
Brain modeling
CNN-LSTM
Communications technology
Convolutional neural networks
Deep learning
DNN
EEG
Electroencephalography
GRU
Headphones
LSTM
Music
native language
Neural networks
non-native language
Title EEG-Based Identification of Native and Non-Native Language Perception Using Deep Learning
URI https://ieeexplore.ieee.org/document/11034481
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aL558VXyTg9dst5vdbXJVW4voUlChnkoeExFht8juxV_vJLutKAheQpJDCJkkk5nM9w0hl9bgMUqdZMLEhqVWAROJxUJluTRpEpvYA4Ufinz6nN7Ns3kHVg9YGAAIwWcQ-Wr4y7eVabyrbICqiqM5gcbOJu6zFqy1dqjg5kTTg3fEosNYDvBEef80vkFyD7lKsmg1wI9UKkGTTHZIsZpDG0DyHjW1jsznL3rGf09yl_S_QXt0tlZHe2QDyn2yFfI4H5CX8fiWXaHGsrSF5rrOV0crR4tA_k1VaWlRlaxr3neeTDpbx77QEGBAbwCWtCNmfe2Tx8n46XrKuqwK7E3ymkmdOLRyjLSZdskIjMKrN7fODlOHgtFK8NxKbAHo2I1yPTR4KTiDzzxPNsUPSa-sSjgiFHLpuI2tyKRIM3AaRxBKSCWMkTpOj0nfr85i2dJmLFYLc_JH_ynZ9kLyXzUJPyO9-qOBc9T4tb4Ikv4CQDqrhw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7iDnry18Tf5uA1XdemXXJVN6duZeCEeRpN8iIitEO6i3-9L2k3URC8lKaHEPKafHkv7_seIVdG4zLiVjKhQ824yYGJyOAjT1KpeRTq0BGFx1k6fOYPs2TWkNU9FwYAfPIZBO7V3-WbUi9dqKyDUBWjO4HOTguBnyc1XWsdUsHfE52PuJEW7Yayg2vKRajxFJI60lWUBKsufhRT8Vgy2CHZahR1Csl7sKxUoD9_CTT-e5i7pP1N26OTNSDtkQ0o9knLV3I-IC_9_h27RswytCbn2iZaR0tLMy__TfPC0KwsWNMcNbFMOllnv1CfYkBvARa0kWZ9bZOnQX96M2RNXQX2JuOKSRVZ9HO0NImyUQ90jptvaqzpcoumUbmIUyOxBaBC20tVV-O2YDUe9JzcVHxINouygCNCIZU2NqERiRQ8AauwB5ELmQutpQr5MWm72ZkvauGM-WpiTv74fkm2htPxaD66zx5PybYzmLu4ieIzsll9LOEc8b9SF97qX2sUrtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Communication+Technologies+%28Online%29&rft.atitle=EEG-Based+Identification+of+Native+and+Non-Native+Language+Perception+Using+Deep+Learning&rft.au=Hussain%2C+Muhammad+Abid&rft.au=Usman%2C+Imran&rft.date=2025-04-23&rft.pub=IEEE&rft.eissn=2996-3621&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FComTech65062.2025.11034481&rft.externalDocID=11034481