Modified Quantum Long-Short Term Memory with Variational Quantum Circuits for PV Power Forecasting

Time series forecasting is vital in many fields, including energy demand prediction and financial markets. Long Short-Term Memory (LSTM) networks have demonstrated strong performance in capturing temporal dependencies in sequential data. However, traditional LSTM face challenges such as vanishing gr...

Full description

Saved in:
Bibliographic Details
Published inConference record of the Industry Applications Conference pp. 1 - 7
Main Authors Phan, Ha-Vu, Pham, Tan-Hung, Tran, Khang B., Phan, Quoc-Thang, Phan, Quoc Dung, Wu, Yuan-Kang
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.06.2025
Subjects
Online AccessGet full text
ISSN2576-702X
DOI10.1109/IAS62731.2025.11061559

Cover

Abstract Time series forecasting is vital in many fields, including energy demand prediction and financial markets. Long Short-Term Memory (LSTM) networks have demonstrated strong performance in capturing temporal dependencies in sequential data. However, traditional LSTM face challenges such as vanishing gradients and limited capabilities in modeling long-term dependencies, especially with complex, high-dimensional data. The model integrates Variable Quantum Circuit (VQC) into a modified LSTM (mLSTM) structure, taking advantage of quantum properties such as superposition and entanglement to improve memory retention and computational efficiency. We would like to introduce modified Quantum Long Short-Term Memory (mQLSTM), which is specifically designed for photovoltaic (PV) energy forecasting. Key improvements include a quantum memory mechanism that mitigates loss of information over extended sequences, a redesigned forget gate to enhance long-term learning and an Exponentially Weighted Feature (EWF) layer to accelerate convergence and enhance generalization. This paper highlights the potential of quantum-enhanced deep learning architectures to advance time series forecasting and opens new directions for practical applications in renewable energy and beyond.
AbstractList Time series forecasting is vital in many fields, including energy demand prediction and financial markets. Long Short-Term Memory (LSTM) networks have demonstrated strong performance in capturing temporal dependencies in sequential data. However, traditional LSTM face challenges such as vanishing gradients and limited capabilities in modeling long-term dependencies, especially with complex, high-dimensional data. The model integrates Variable Quantum Circuit (VQC) into a modified LSTM (mLSTM) structure, taking advantage of quantum properties such as superposition and entanglement to improve memory retention and computational efficiency. We would like to introduce modified Quantum Long Short-Term Memory (mQLSTM), which is specifically designed for photovoltaic (PV) energy forecasting. Key improvements include a quantum memory mechanism that mitigates loss of information over extended sequences, a redesigned forget gate to enhance long-term learning and an Exponentially Weighted Feature (EWF) layer to accelerate convergence and enhance generalization. This paper highlights the potential of quantum-enhanced deep learning architectures to advance time series forecasting and opens new directions for practical applications in renewable energy and beyond.
Author Tran, Khang B.
Phan, Quoc Dung
Phan, Quoc-Thang
Pham, Tan-Hung
Wu, Yuan-Kang
Phan, Ha-Vu
Author_xml – sequence: 1
  givenname: Ha-Vu
  surname: Phan
  fullname: Phan, Ha-Vu
  email: phanhavu296@gmail.com
  organization: FPT University,Artificial Intelligence,Ho Chi Minh City,Vietnam
– sequence: 2
  givenname: Tan-Hung
  surname: Pham
  fullname: Pham, Tan-Hung
  email: pthung7102002@gmail.com
  organization: FPT University,Artificial Intelligence,Ho Chi Minh City,Vietnam
– sequence: 3
  givenname: Khang B.
  surname: Tran
  fullname: Tran, Khang B.
  email: tranbaokhang6@gmail.com
  organization: International University Vietnam National University,School of Electrical Engineering,Ho Chi Minh City,Vietnam
– sequence: 4
  givenname: Quoc-Thang
  surname: Phan
  fullname: Phan, Quoc-Thang
  email: thangphanquoc2407@gmail.com
  organization: National Chung Cheng University,Chia-Yi,Taiwan,62102
– sequence: 5
  givenname: Quoc Dung
  surname: Phan
  fullname: Phan, Quoc Dung
  organization: Ho Chi Minh City University of Technology (HCMUT) Vietnam National University Ho Chi Minh City (VNU-HCM),Faculty of Electrical and Electronics Engineering,Ho Chi Minh City,Vietnam
– sequence: 6
  givenname: Yuan-Kang
  surname: Wu
  fullname: Wu, Yuan-Kang
  email: Allenwu@ccu.edu.tw
  organization: National Chung Cheng University,Chia-Yi,Taiwan,62102
BookMark eNo9kN9KwzAcRqMouM29gUheoDNpmqS5HMXpoMPJyvBupM0vW2RtJE0Ze3sV_1wd-Dh8F2eMrjrfAUL3lMwoJephOd-IVDI6S0nKvydBOVcXaKpkToXgGZdSyEs0SrkUiSTp2w0a9_07IYTlgo5QvfLGWQcGvw66i0OLS9_tk83Bh4grCC1eQevDGZ9cPOCtDk5H5zt9_PcLF5rBxR5bH_B6i9f-BAEvfIBG99F1-1t0bfWxh-kvJ6haPFbFc1K-PC2LeZk4xWKiBM0Zt2CanDFeW0WUhIwSS2tNDAFrhJB5TRsuTdMobZj-EiQzGc1SSQSboLufWwcAu4_gWh3Ou78k7BOHCVi3
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IAS62731.2025.11061559
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665457767
1665457767
EISSN 2576-702X
EndPage 7
ExternalDocumentID 11061559
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IM
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIO
RNS
ID FETCH-LOGICAL-i93t-961835fedc8335bf9097e410f1ba0d0efd6678b1c57dcc9ad3a97e73d41427063
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-961835fedc8335bf9097e410f1ba0d0efd6678b1c57dcc9ad3a97e73d41427063
PageCount 7
ParticipantIDs ieee_primary_11061559
PublicationCentury 2000
PublicationDate 2025-June-15
PublicationDateYYYYMMDD 2025-06-15
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-June-15
  day: 15
PublicationDecade 2020
PublicationTitle Conference record of the Industry Applications Conference
PublicationTitleAbbrev IAS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003861
Score 2.2936418
Snippet Time series forecasting is vital in many fields, including energy demand prediction and financial markets. Long Short-Term Memory (LSTM) networks have...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Forecasting
Integrated circuit modeling
Long short term memory
Long Short-Term Memory (LSTM)
Memory management
mQLSTM
Photovoltaic (PV) power
Photovoltaic systems
Quantum circuit
Quantum entanglement
Quantum Long Short-Term Memory (QLSTM)
Quantum Machine Learning
Renewable Energy
Renewable energy sources
Time series analysis
Time Series Forecasting
Variational Quantum Circuits (VQC)
Title Modified Quantum Long-Short Term Memory with Variational Quantum Circuits for PV Power Forecasting
URI https://ieeexplore.ieee.org/document/11061559
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJ7jwGuKtHLimS5a2oUc0MQ3EpqGNabcpT6gQLdraA_x6nK4bDwmJWxWlSeVU_mzHn43QpbOx5lImxIWhIGFbCyJDyYkBuPdc0IQaHxroD-LeY3g3jaY1Wb3iwlhrq-QzG_jH6i7f5Lr0obIW8_4LmMCbaBP-syVZa612-VXMagowo0nr9noUAzR7F7AdBas3f_RQqSCku4MGq82XmSMvQVmoQH_8qsv476_bRc0vth4ernFoD23YbB9tfys0eIBUPzepA2sTP5QgyvIV3-fZExk9g_GNx6Cccd9n3L5jH5bFE_Cf6xjhen4nnesyLRYYjFw8nOCh766GfWNPLRc-dbqJxt2bcadH6u4KJE14QXynFx45a7SnXSmX0ETYkFHHlKSGWmdiwDHFdCSM1ok0XMIEwU3IwrYAw-YQNbI8s0cIU6HADYsdFRIc7UiCknDKwRoalmLcHaOml9bsbVk_Y7YS1Mkf46doyx-aT8hi0RlqFPPSngP0F-qiOvJPgAqupQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oPagXXzW-3YPXpbtlATmaxqbV0tS0Nr01yz6UGMG0cNBf7yyl9ZGYeCNkWchsMt83w3wzCF0Z7UtXiJAYzgPCmzIggguXKIB7qwUNqbKpgajvdx753cSbVGL1UgujtS6Lz7RjL8t_-SqThU2VNZiNX4ACr6MNAH7uLeRaK8frXvusEgEzGja6N0MfwNkGgU3PWT77Y4pKCSLtHdRfvn5RO_LiFHnsyI9fnRn__X27qP6l18ODFRLtoTWd7qPtb60GD1AcZSoxwDfxQwHGLF5xL0ufyPAZ6DcegXvGka25fcc2MYvHEEFXWcLV-lYyk0WSzzHQXDwY44Gdr4btaE8p5rZ4uo5G7dtRq0Oq-QokCd2c2Fkvrme0klZ4FZuQhoHmjBoWC6qoNsoHJIuZ9AIlZSiUK2BB4CrOeDMAanOIammW6iOEaRBDIOYbGggItT0BbsLEBvaQsBVzzTGqW2tN3xYdNKZLQ538cf8SbXZGUW_a6_bvT9GWPUBbnsW8M1TLZ4U-ByKQxxfl8X8C0oWx8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Conference+record+of+the+Industry+Applications+Conference&rft.atitle=Modified+Quantum+Long-Short+Term+Memory+with+Variational+Quantum+Circuits+for+PV+Power+Forecasting&rft.au=Phan%2C+Ha-Vu&rft.au=Pham%2C+Tan-Hung&rft.au=Tran%2C+Khang+B.&rft.au=Phan%2C+Quoc-Thang&rft.date=2025-06-15&rft.pub=IEEE&rft.eissn=2576-702X&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1109%2FIAS62731.2025.11061559&rft.externalDocID=11061559