Bayesian Regression-Based Power Loss Probabilistic Estimation of Dust-Accumulated PV Systems
This paper proposes a Bayesian regression neural network (SolarBRNN) combined with a feature pyramid network (FPN) for photovoltaic power loss (PVPL) prediction. The model effectively captures multi-scale features from images by incorporating the feature pyramid module, enhancing its ability to dete...
Saved in:
Published in | Chinese Control and Decision Conference pp. 3495 - 3501 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1948-9447 |
DOI | 10.1109/CCDC65474.2025.11090541 |
Cover
Loading…
Abstract | This paper proposes a Bayesian regression neural network (SolarBRNN) combined with a feature pyramid network (FPN) for photovoltaic power loss (PVPL) prediction. The model effectively captures multi-scale features from images by incorporating the feature pyramid module, enhancing its ability to detect the distribution of dust and its impact on power loss. Through Bayesian regression, the model can not only predict the mean power loss but also quantify the uncertainty of the predictions, providing more reliable information for system operation. Experimental results demonstrate that, compared to quantile regression methods, the SolarBRNN model significantly improves performance in terms of prediction standard deviation and the confidence interval coverage probability (CICP). Notably, the CICP indicator increases by 12%, indicating better prediction accuracy and stronger adaptability. |
---|---|
AbstractList | This paper proposes a Bayesian regression neural network (SolarBRNN) combined with a feature pyramid network (FPN) for photovoltaic power loss (PVPL) prediction. The model effectively captures multi-scale features from images by incorporating the feature pyramid module, enhancing its ability to detect the distribution of dust and its impact on power loss. Through Bayesian regression, the model can not only predict the mean power loss but also quantify the uncertainty of the predictions, providing more reliable information for system operation. Experimental results demonstrate that, compared to quantile regression methods, the SolarBRNN model significantly improves performance in terms of prediction standard deviation and the confidence interval coverage probability (CICP). Notably, the CICP indicator increases by 12%, indicating better prediction accuracy and stronger adaptability. |
Author | Fang, Shixiong Zhang, Kanjian Chen, Xinyi Shen, Yu Li, Chunrong Wei, Haikun |
Author_xml | – sequence: 1 givenname: Chunrong surname: Li fullname: Li, Chunrong email: 220232167@seu.edu.cn organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China – sequence: 2 givenname: Xinyi surname: Chen fullname: Chen, Xinyi email: chenxinyi@seu.edu.cn organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China – sequence: 3 givenname: Yu surname: Shen fullname: Shen, Yu email: yu_shen@seu.edu.cn organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China – sequence: 4 givenname: Kanjian surname: Zhang fullname: Zhang, Kanjian email: kjzhang@seu.edu.cn organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China – sequence: 5 givenname: Shixiong surname: Fang fullname: Fang, Shixiong email: sxfang@seu.edu.cn organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China – sequence: 6 givenname: Haikun surname: Wei fullname: Wei, Haikun email: hkwei@seu.edu.cn organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China |
BookMark | eNo1UNtKw0AUXEXBtvYPBPcHUs9m749tWi8QsGjxSSjbzUZWcpGcFMnfG28vMzAz5zDMlJw1bRMIuWawYAzsTZatMyWFFosUUvmjgRTshMyttoZzJhlIJU_JhFlhEiuEviBTxHcApTjAhLyu3BAwuoY-hbcuIMa2SVYOQ0G37WfoaN4i0m3XHtwhVhH76OlmxNr1Y5K2JV0fsU-W3h_rY-X677sX-jxgH2q8JOelqzDM_3hGdrebXXaf5I93D9kyT6LlfWKckE44k5rCK60L631IlZKF0Zr50kKqrLdMG-ZB6bQoLIDgwI2Tyo8un5Gr37cxhLD_6MZy3bD_H4N_AScWVY0 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CCDC65474.2025.11090541 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798331510565 |
EISSN | 1948-9447 |
EndPage | 3501 |
ExternalDocumentID | 11090541 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFC2807105 funderid: 10.13039/501100012166 |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-8a45a4a828dc677d9cce2665d8771cf90269c91781c0672dd90043038a56c9023 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:00:36 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-8a45a4a828dc677d9cce2665d8771cf90269c91781c0672dd90043038a56c9023 |
PageCount | 7 |
ParticipantIDs | ieee_primary_11090541 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-16 |
PublicationDateYYYYMMDD | 2025-05-16 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Chinese Control and Decision Conference |
PublicationTitleAbbrev | CCDC |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0066300 |
Score | 1.9113692 |
Snippet | This paper proposes a Bayesian regression neural network (SolarBRNN) combined with a feature pyramid network (FPN) for photovoltaic power loss (PVPL)... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 3495 |
SubjectTerms | Accuracy Adaptation models Bayes methods Bayesian regression neural network Computational modeling dust Estimation Feature extraction feature pyramid network Neural networks photovoltaic power loss power loss estimation Predictive models Systems operation Uncertainty uncertainty quantification |
Title | Bayesian Regression-Based Power Loss Probabilistic Estimation of Dust-Accumulated PV Systems |
URI | https://ieeexplore.ieee.org/document/11090541 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFA06K934GvFNFm7T6SNNm6XTmWEQHQYZZRbCkCapiNCKtgv9eu_twxcIbkppmybkQk9Pcs-5hJzzwHUN4CoLYyUYl0qzVEXAUrifhSrlWaRRO3w9E9NbfrkMl61YvdbCWGvr5DPr4Gm9l28KXeFS2QDdMeEXA8jOOjC3RqzVfXYFeke1CVzw2CBJRgkW1sV1Ez90uqY_iqjUGDLZIrOu9yZ15MmpytTR77-MGf89vG3S_5Lr0fknEO2QNZvvks1vToN75H6o3izqJemNfWhSX3M2BAQzdI510ugVgCW-JK0dd9G8mY7h2AgbaZHRUfVasgsNg8CCX9jujrZ2532ymIwXyZS1hRXYowxKFiseKq6AaxktoshIrS3gdGjiKPJ0JoGWSQ00LvY0btQaI2tnsCBWodBwN9gnvbzI7QGhIjaxFEp5aZbyAKKbWVcCP3cjP7OB6x-SPs7T6rmxzlh1U3T0x_VjsoHhwu15T5yQXvlS2VNA_TI9q6P9AUT5q_U |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA4yH9QXbxPv5sHXdr2kafPouo2p2xgyZQ_CSJNUROhE2wf99Z7TizcQfCmlbdqQA_3yJef7DiHnzHccDbhqBZHkFhNSWYkMgaUwLw1kwtJQoXZ4POHDW3Y1D-a1WL3UwhhjyuQzY-NpuZevl6rApbIOumPCFAPIzioAPxOVXKv58XJ0j6pTuODBThz3YiytiysnXmA3jX-UUSlRZLBJJs33q-SRJ7vIE1u9_7Jm_HcHt0j7S7BHp59QtE1WTLZDNr55De6S-658M6iYpDfmoUp-zawuYJimU6yURkcAl_iSpPTcRftm2odjJW2ky5T2itfculDQCSz5he3uaG143iazQX8WD626tIL1KPzciiQLJJPAtrTiYaiFUgaQOtBRGLoqFUDMhAIiF7kKt2q1FqU3mB_JgCu46--RVrbMzD6hPNKR4FK6SZowH-KbGkcAQ3dCLzW-4x2QNo7T4rkyz1g0Q3T4x_UzsjacjUeL0eXk-oisY-hws97lx6SVvxTmBOYAeXJaRv4De5CvRQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Bayesian+Regression-Based+Power+Loss+Probabilistic+Estimation+of+Dust-Accumulated+PV+Systems&rft.au=Li%2C+Chunrong&rft.au=Chen%2C+Xinyi&rft.au=Shen%2C+Yu&rft.au=Zhang%2C+Kanjian&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=3495&rft.epage=3501&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090541&rft.externalDocID=11090541 |