Bayesian Regression-Based Power Loss Probabilistic Estimation of Dust-Accumulated PV Systems

This paper proposes a Bayesian regression neural network (SolarBRNN) combined with a feature pyramid network (FPN) for photovoltaic power loss (PVPL) prediction. The model effectively captures multi-scale features from images by incorporating the feature pyramid module, enhancing its ability to dete...

Full description

Saved in:
Bibliographic Details
Published inChinese Control and Decision Conference pp. 3495 - 3501
Main Authors Li, Chunrong, Chen, Xinyi, Shen, Yu, Zhang, Kanjian, Fang, Shixiong, Wei, Haikun
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.05.2025
Subjects
Online AccessGet full text
ISSN1948-9447
DOI10.1109/CCDC65474.2025.11090541

Cover

Loading…
Abstract This paper proposes a Bayesian regression neural network (SolarBRNN) combined with a feature pyramid network (FPN) for photovoltaic power loss (PVPL) prediction. The model effectively captures multi-scale features from images by incorporating the feature pyramid module, enhancing its ability to detect the distribution of dust and its impact on power loss. Through Bayesian regression, the model can not only predict the mean power loss but also quantify the uncertainty of the predictions, providing more reliable information for system operation. Experimental results demonstrate that, compared to quantile regression methods, the SolarBRNN model significantly improves performance in terms of prediction standard deviation and the confidence interval coverage probability (CICP). Notably, the CICP indicator increases by 12%, indicating better prediction accuracy and stronger adaptability.
AbstractList This paper proposes a Bayesian regression neural network (SolarBRNN) combined with a feature pyramid network (FPN) for photovoltaic power loss (PVPL) prediction. The model effectively captures multi-scale features from images by incorporating the feature pyramid module, enhancing its ability to detect the distribution of dust and its impact on power loss. Through Bayesian regression, the model can not only predict the mean power loss but also quantify the uncertainty of the predictions, providing more reliable information for system operation. Experimental results demonstrate that, compared to quantile regression methods, the SolarBRNN model significantly improves performance in terms of prediction standard deviation and the confidence interval coverage probability (CICP). Notably, the CICP indicator increases by 12%, indicating better prediction accuracy and stronger adaptability.
Author Fang, Shixiong
Zhang, Kanjian
Chen, Xinyi
Shen, Yu
Li, Chunrong
Wei, Haikun
Author_xml – sequence: 1
  givenname: Chunrong
  surname: Li
  fullname: Li, Chunrong
  email: 220232167@seu.edu.cn
  organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China
– sequence: 2
  givenname: Xinyi
  surname: Chen
  fullname: Chen, Xinyi
  email: chenxinyi@seu.edu.cn
  organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China
– sequence: 3
  givenname: Yu
  surname: Shen
  fullname: Shen, Yu
  email: yu_shen@seu.edu.cn
  organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China
– sequence: 4
  givenname: Kanjian
  surname: Zhang
  fullname: Zhang, Kanjian
  email: kjzhang@seu.edu.cn
  organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China
– sequence: 5
  givenname: Shixiong
  surname: Fang
  fullname: Fang, Shixiong
  email: sxfang@seu.edu.cn
  organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China
– sequence: 6
  givenname: Haikun
  surname: Wei
  fullname: Wei, Haikun
  email: hkwei@seu.edu.cn
  organization: School of Automation, Southeast University,Key Laboratory of Measurement and Control of CSE, Ministry of Education,Nanjing,China
BookMark eNo1UNtKw0AUXEXBtvYPBPcHUs9m749tWi8QsGjxSSjbzUZWcpGcFMnfG28vMzAz5zDMlJw1bRMIuWawYAzsTZatMyWFFosUUvmjgRTshMyttoZzJhlIJU_JhFlhEiuEviBTxHcApTjAhLyu3BAwuoY-hbcuIMa2SVYOQ0G37WfoaN4i0m3XHtwhVhH76OlmxNr1Y5K2JV0fsU-W3h_rY-X677sX-jxgH2q8JOelqzDM_3hGdrebXXaf5I93D9kyT6LlfWKckE44k5rCK60L631IlZKF0Zr50kKqrLdMG-ZB6bQoLIDgwI2Tyo8un5Gr37cxhLD_6MZy3bD_H4N_AScWVY0
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC65474.2025.11090541
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331510565
EISSN 1948-9447
EndPage 3501
ExternalDocumentID 11090541
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFC2807105
  funderid: 10.13039/501100012166
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-8a45a4a828dc677d9cce2665d8771cf90269c91781c0672dd90043038a56c9023
IEDL.DBID RIE
IngestDate Wed Aug 27 02:00:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-8a45a4a828dc677d9cce2665d8771cf90269c91781c0672dd90043038a56c9023
PageCount 7
ParticipantIDs ieee_primary_11090541
PublicationCentury 2000
PublicationDate 2025-May-16
PublicationDateYYYYMMDD 2025-05-16
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-16
  day: 16
PublicationDecade 2020
PublicationTitle Chinese Control and Decision Conference
PublicationTitleAbbrev CCDC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0066300
Score 1.9113692
Snippet This paper proposes a Bayesian regression neural network (SolarBRNN) combined with a feature pyramid network (FPN) for photovoltaic power loss (PVPL)...
SourceID ieee
SourceType Publisher
StartPage 3495
SubjectTerms Accuracy
Adaptation models
Bayes methods
Bayesian regression neural network
Computational modeling
dust
Estimation
Feature extraction
feature pyramid network
Neural networks
photovoltaic power loss
power loss estimation
Predictive models
Systems operation
Uncertainty
uncertainty quantification
Title Bayesian Regression-Based Power Loss Probabilistic Estimation of Dust-Accumulated PV Systems
URI https://ieeexplore.ieee.org/document/11090541
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSsQwFA06K934GvFNFm7T6SNNm6XTmWEQHQYZZRbCkCapiNCKtgv9eu_twxcIbkppmybkQk9Pcs-5hJzzwHUN4CoLYyUYl0qzVEXAUrifhSrlWaRRO3w9E9NbfrkMl61YvdbCWGvr5DPr4Gm9l28KXeFS2QDdMeEXA8jOOjC3RqzVfXYFeke1CVzw2CBJRgkW1sV1Ez90uqY_iqjUGDLZIrOu9yZ15MmpytTR77-MGf89vG3S_5Lr0fknEO2QNZvvks1vToN75H6o3izqJemNfWhSX3M2BAQzdI510ugVgCW-JK0dd9G8mY7h2AgbaZHRUfVasgsNg8CCX9jujrZ2532ymIwXyZS1hRXYowxKFiseKq6AaxktoshIrS3gdGjiKPJ0JoGWSQ00LvY0btQaI2tnsCBWodBwN9gnvbzI7QGhIjaxFEp5aZbyAKKbWVcCP3cjP7OB6x-SPs7T6rmxzlh1U3T0x_VjsoHhwu15T5yQXvlS2VNA_TI9q6P9AUT5q_U
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA4yH9QXbxPv5sHXdr2kafPouo2p2xgyZQ_CSJNUROhE2wf99Z7TizcQfCmlbdqQA_3yJef7DiHnzHccDbhqBZHkFhNSWYkMgaUwLw1kwtJQoXZ4POHDW3Y1D-a1WL3UwhhjyuQzY-NpuZevl6rApbIOumPCFAPIzioAPxOVXKv58XJ0j6pTuODBThz3YiytiysnXmA3jX-UUSlRZLBJJs33q-SRJ7vIE1u9_7Jm_HcHt0j7S7BHp59QtE1WTLZDNr55De6S-658M6iYpDfmoUp-zawuYJimU6yURkcAl_iSpPTcRftm2odjJW2ky5T2itfculDQCSz5he3uaG143iazQX8WD626tIL1KPzciiQLJJPAtrTiYaiFUgaQOtBRGLoqFUDMhAIiF7kKt2q1FqU3mB_JgCu46--RVrbMzD6hPNKR4FK6SZowH-KbGkcAQ3dCLzW-4x2QNo7T4rkyz1g0Q3T4x_UzsjacjUeL0eXk-oisY-hws97lx6SVvxTmBOYAeXJaRv4De5CvRQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Chinese+Control+and+Decision+Conference&rft.atitle=Bayesian+Regression-Based+Power+Loss+Probabilistic+Estimation+of+Dust-Accumulated+PV+Systems&rft.au=Li%2C+Chunrong&rft.au=Chen%2C+Xinyi&rft.au=Shen%2C+Yu&rft.au=Zhang%2C+Kanjian&rft.date=2025-05-16&rft.pub=IEEE&rft.eissn=1948-9447&rft.spage=3495&rft.epage=3501&rft_id=info:doi/10.1109%2FCCDC65474.2025.11090541&rft.externalDocID=11090541