Dimensionality Reduction of Liver Function Indicators based on Factor Analysis (FA)

Factor analysis (FA) is a statistical method used to reduce dimensionality by condensing a large number of observed variables into a smaller set of latent factors. In this study, FA is employed to reduce dimensionality of liver function indicators. Four test indicators, alanine transaminase (ALT) le...

Full description

Saved in:
Bibliographic Details
Published inIEEE ... Information Technology and Mechatronics Engineering Conference (ITOEC ... ) (Online) Vol. 8; pp. 794 - 798
Main Author Wang, Pengbo
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.03.2025
Subjects
Online AccessGet full text
ISSN2693-289X
DOI10.1109/ITOEC63606.2025.10968107

Cover

Loading…
Abstract Factor analysis (FA) is a statistical method used to reduce dimensionality by condensing a large number of observed variables into a smaller set of latent factors. In this study, FA is employed to reduce dimensionality of liver function indicators. Four test indicators, alanine transaminase (ALT) level, hepatomegaly index, zinc sulfate turbidity, and alpha-fetoprotein (AFP) level, are the observed variables. Datasets from twenty collected samples are exploited. The four observed variables are represented by linear combination of two latent factors. Factor loadings are calculated and illustrated using an arrow graph. These results indicate that the first two indicators correlate strongly with factor 1, the third indicator correlate strongly with factor 2, and the fourth indicator exhibits weak relationships with each factor. The first two indicators are assumed to be primarily influenced by one latent factor and are independent of the other two indicators. The third and fourth indicators are independent variables. These findings help physicians better understand the intrinsic structures of liver function indicators and offer guidance for clinical practice. This study highlights the potential of FA in medical applications.
AbstractList Factor analysis (FA) is a statistical method used to reduce dimensionality by condensing a large number of observed variables into a smaller set of latent factors. In this study, FA is employed to reduce dimensionality of liver function indicators. Four test indicators, alanine transaminase (ALT) level, hepatomegaly index, zinc sulfate turbidity, and alpha-fetoprotein (AFP) level, are the observed variables. Datasets from twenty collected samples are exploited. The four observed variables are represented by linear combination of two latent factors. Factor loadings are calculated and illustrated using an arrow graph. These results indicate that the first two indicators correlate strongly with factor 1, the third indicator correlate strongly with factor 2, and the fourth indicator exhibits weak relationships with each factor. The first two indicators are assumed to be primarily influenced by one latent factor and are independent of the other two indicators. The third and fourth indicators are independent variables. These findings help physicians better understand the intrinsic structures of liver function indicators and offer guidance for clinical practice. This study highlights the potential of FA in medical applications.
Author Wang, Pengbo
Author_xml – sequence: 1
  givenname: Pengbo
  surname: Wang
  fullname: Wang, Pengbo
  email: wangpb@shzq.edu.cn
  organization: Shanghai Zhongqiao Vocational and Technical University,Shanghai,China,201514
BookMark eNo1kEtLw0AAhFdRsNb8Aw971EPiPpJ9HENtNBAoaA7eyj5hpU0kmwr59y60nob5mJnD3IObYRwcABCjAmMkX9p-t90wyhArCCJVkRgTGPErkEkuBaW4IrIU5BqsCJM0J0J-3YEsxm-EECWISiFX4PM1HN0QwzioQ5gX-OHsyczJwtHDLvy6CTan4UzawQaj5nGKUKvoLEysUSYBWKf6EkOET039_ABuvTpEl110Dfpm22_e82731m7qLg-SzrmoCNWlYtRyr7lFmGNLuPalZtpI7VjJrSTYcF9xQ0uekrgyRnGJtUXE0zV4PM8G59z-ZwpHNS37_xvoHwF1VAw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ITOEC63606.2025.10968107
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331529482
EISSN 2693-289X
EndPage 798
ExternalDocumentID 10968107
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-8523b4a63d7fb7d0171d27bf4b6bc9be647d921c7f57c347a6315cca791bd02f3
IEDL.DBID RIE
IngestDate Wed Apr 30 05:50:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-8523b4a63d7fb7d0171d27bf4b6bc9be647d921c7f57c347a6315cca791bd02f3
PageCount 5
ParticipantIDs ieee_primary_10968107
PublicationCentury 2000
PublicationDate 2025-March-14
PublicationDateYYYYMMDD 2025-03-14
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-March-14
  day: 14
PublicationDecade 2020
PublicationTitle IEEE ... Information Technology and Mechatronics Engineering Conference (ITOEC ... ) (Online)
PublicationTitleAbbrev ITOEC
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003203989
Score 1.904643
Snippet Factor analysis (FA) is a statistical method used to reduce dimensionality by condensing a large number of observed variables into a smaller set of latent...
SourceID ieee
SourceType Publisher
StartPage 794
SubjectTerms Correlation
Dimensionality reduction
factor analysis
factor loading
Indexes
Liver
liver function
Loading
Mechatronics
Medical services
Statistical analysis
test indicator
Turbidity
Zinc
Title Dimensionality Reduction of Liver Function Indicators based on Factor Analysis (FA)
URI https://ieeexplore.ieee.org/document/10968107
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDh70kNqkSdMcZa5sIlN0wm6j-QUidCLdxb_evHSdKAjeyqMlIY_mey_53vcQumBVgJVM5QSwk3CrUqK8EKTwFafMGQiSgW0xzccv_G4u5uti9VgL45yL5DOXwGO8y7dLs4KjsvCHK5DPkj3UC5lbW6y1OVDJYMxCdWydVF1PZg-jIehhARWBiaT7_EcjlYgj5Q6adjNo6SNvyarRifn8Jc747ynuosF3yR5-3IDRHtpy9T56vgXt_lZ3I0Tb-Al0WsETeOnxPTAycBlwLVomNdzYQO8dDMhmcbCVsRkP7oRL8GV5czVAs3I0G47JuosCeVVZQ4qQaWpe5ZmVXksL8jiWSe25zrVR2uVcWsWokV5Ik3EZ3qQiuFUqqm3KfHaA-vWydocIM6qLEL34ImwTIVFyOq1AXtK4lFMnqvQIDWBBFu-tTsaiW4vjP-wnaBv8Aowuyk9Rv_lYubMA8Y0-j679Aks1pBQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_Cgh9YmTZrmKHNl0zlFK-w2ml8whE6ku_jXm9euEwXBW3mUNOSRfu8l3_seQhe08LASyyQA7AyYkVEgHedB6gpGqNUQJAPbYpwMXtndhE-Wxep1LYy1tiaf2RAe67t8M9cLOCrzO1yCfJZYRxse-JlsyrVWRyoxfDWVLV8nktfD_LHfA0UsICNQHrYD_GilUiNJto3G7RwaAslbuKhUqD9_yTP-e5I7qPtdtIefVnC0i9ZsuYdebkG9v1He8PE2fgalVvAFnjs8Ak4Gzjyy1ZZhCXc20H0HA7YZ7G1Z3Y4Ht9Il-DK7ueqiPOvnvUGw7KMQzGRcBanPNRUrktgIp4QBgRxDhXJMJUpLZRMmjKREC8eFjpnwbxLuHSskUSaiLt5HnXJe2gOEKVGpj19c6n8UPlWyKipAYFLbiBHLi-gQdWFBpu-NUsa0XYujP-znaHOQP4ymo-H4_hhtgY-A30XYCepUHwt76gG_Ume1m78AGjqnZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+...+Information+Technology+and+Mechatronics+Engineering+Conference+%28ITOEC+...+%29+%28Online%29&rft.atitle=Dimensionality+Reduction+of+Liver+Function+Indicators+based+on+Factor+Analysis+%28FA%29&rft.au=Wang%2C+Pengbo&rft.date=2025-03-14&rft.pub=IEEE&rft.eissn=2693-289X&rft.volume=8&rft.spage=794&rft.epage=798&rft_id=info:doi/10.1109%2FITOEC63606.2025.10968107&rft.externalDocID=10968107