CAT-Net: A Co-Adaptive Transfer Learning Network for BCI-Assisted Neurorehabilitation

Brain-computer interfaces (BCIs) hold great potential for motor recovery in post-stroke patients. However, the motor imagery decoding accuracy is limited by the non-stationarity of EEG signals across subjects and sessions. We propose CAT-Net: a Co-Adaptive Transfer learning network to simultaneously...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 1 - 5
Main Authors Zhang, Shuailei, Ding, Yi, Jiang, Muyun, Tang, Ning, Chew, Effie, Ang, Kai Keng, Guan, Cuntai
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain-computer interfaces (BCIs) hold great potential for motor recovery in post-stroke patients. However, the motor imagery decoding accuracy is limited by the non-stationarity of EEG signals across subjects and sessions. We propose CAT-Net: a Co-Adaptive Transfer learning network to simultaneously address the inter-subject variability and inter-session nonstationarity in EEG data. The proposed method selects a relevant subset of data from all the available subjects' data to train an initial model, followed by subject-specific transfer learning from the initial model to the target subject to establish a pretrain model. Subsequently, online adaptive training is then applied to incrementally train the pretrain model using the data from previous sessions for the target subject. This proposed network using this unique co-adaptive training method is then evaluated on both upper and lower-limb neurorehabilitation EEG datasets comprising 358 sessions from 33 stroke patients. The results showed significant accuracy improvements, achieving averaged accuracies of 70.6% and 72.3% on the respective datasets, surpassing the state-of-the-art baselines.
AbstractList Brain-computer interfaces (BCIs) hold great potential for motor recovery in post-stroke patients. However, the motor imagery decoding accuracy is limited by the non-stationarity of EEG signals across subjects and sessions. We propose CAT-Net: a Co-Adaptive Transfer learning network to simultaneously address the inter-subject variability and inter-session nonstationarity in EEG data. The proposed method selects a relevant subset of data from all the available subjects' data to train an initial model, followed by subject-specific transfer learning from the initial model to the target subject to establish a pretrain model. Subsequently, online adaptive training is then applied to incrementally train the pretrain model using the data from previous sessions for the target subject. This proposed network using this unique co-adaptive training method is then evaluated on both upper and lower-limb neurorehabilitation EEG datasets comprising 358 sessions from 33 stroke patients. The results showed significant accuracy improvements, achieving averaged accuracies of 70.6% and 72.3% on the respective datasets, surpassing the state-of-the-art baselines.
Author Ding, Yi
Chew, Effie
Guan, Cuntai
Jiang, Muyun
Zhang, Shuailei
Tang, Ning
Ang, Kai Keng
Author_xml – sequence: 1
  givenname: Shuailei
  surname: Zhang
  fullname: Zhang, Shuailei
  email: shuailei.zhang@ntu.edu.sg
  organization: Nanyang Technological University,College of Computing and Data Science,Singapore
– sequence: 2
  givenname: Yi
  surname: Ding
  fullname: Ding, Yi
  email: yi.ding@ntu.edu.sg
  organization: Nanyang Technological University,College of Computing and Data Science,Singapore
– sequence: 3
  givenname: Muyun
  surname: Jiang
  fullname: Jiang, Muyun
  email: james.jiang@ntu.edu.sg
  organization: Nanyang Technological University,College of Computing and Data Science,Singapore
– sequence: 4
  givenname: Ning
  surname: Tang
  fullname: Tang, Ning
  email: ning_tang@nuhs.edu.sg
  organization: National University Hospital,Singapore
– sequence: 5
  givenname: Effie
  surname: Chew
  fullname: Chew, Effie
  email: effie_chew@nuhs.edu.sg
  organization: National University Hospital National University of Singapore,Singapore
– sequence: 6
  givenname: Kai Keng
  surname: Ang
  fullname: Ang, Kai Keng
  email: kkang@i2r.a-star.edu.sg
  organization: Agency for Science, Technology and Research Nanyang Technological University,Singapore
– sequence: 7
  givenname: Cuntai
  surname: Guan
  fullname: Guan, Cuntai
  email: ctguan@ntu.edu.sg
  organization: Nanyang Technological University,College of Computing and Data Science,Singapore
BookMark eNo1kN1KAzEUhKMo2Na-gRfxAVJPkt1Njnfr4k-hqNAVvCunTVajdbckq-Lbu1CFgbn4hmGYMTtqu9Yzdi5hJiXgxbwql8vHDIsCZgpUPpNgLUowB2yKBq3OQRfWZPKQjZQ2KCTC8wkbp_QGAAOwI_ZUlbW49_0lL3nVidLRrg9fnteR2tT4yBeeYhvaFz6Evrv4zpsu8qtqLsqUQuq9G8Bn7KJ_pXXYhp760LWn7LihbfLTP5-w-ua6ru7E4uF2WL0QAXUvjHHocufIWK03jd9LESGqzBkkAmkJMyBFumhy2qy10tRQTtpkRukJO9vXBu_9ahfDB8Wf1f8L-hfvD1Tk
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP49660.2025.10889107
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350368741
EISSN 2379-190X
EndPage 5
ExternalDocumentID 10889107
Genre orig-research
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i93t-77d9d5dda7833cfecfecfe2aa9924d79aa018a940a2a36f5acb323afa5a374723
IEDL.DBID RIE
IngestDate Wed Jul 30 06:15:27 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-77d9d5dda7833cfecfecfe2aa9924d79aa018a940a2a36f5acb323afa5a374723
PageCount 5
ParticipantIDs ieee_primary_10889107
PublicationCentury 2000
PublicationDate 2025-April-6
PublicationDateYYYYMMDD 2025-04-06
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-6
  day: 06
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2880836
Snippet Brain-computer interfaces (BCIs) hold great potential for motor recovery in post-stroke patients. However, the motor imagery decoding accuracy is limited by...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Adaptation models
Brain modeling
Data models
Electroencephalography
Motors
Neurorehabilitation
Stroke (medical condition)
Training
Transfer learning
Title CAT-Net: A Co-Adaptive Transfer Learning Network for BCI-Assisted Neurorehabilitation
URI https://ieeexplore.ieee.org/document/10889107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uD6Ivfk38JoKvqWvSpq1vszg2wTLYhL2NmyYVEdYxuhd_vTdpN50gCH0ohX6Q2-acm95zLiF31uOt8H3BtOQ5C5AgMJCBZGFXI33XUaCk1Tu_ZHLwGjxPw2kjVndaGGOMKz4znt11__J1ma_sUhl-4XGM8Ba1SAszt1qstZl24yiId8ltY6J5P0x74_EosOaTmAXy0FufvNVGxaFI_4Bk6_vXxSMf3qpSXv75y5rx3w94SDrfgj062kDREdkx82Oy_8Nr8ITYBjssM9UD7dG0ZD0NCzvTUQdWeA3aOK2-0ayuDKdIZ-ljOmQYQfsuaOqMPJZb1t4dMuk_TdIBa3oqsPdEVMildaJDrSGKhcgLU28cIME8TEcJQNePIQm6wEHIIoRcCS6ggBAEJh5cnJL2vJybM0IVEi3FRR5ZPX3BJYQqLpCq-5FMCpXDOenYAZotateM2XpsLv44fkn2bJxcVYy8Iu1quTLXCPiVunGB_gLC4an9
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06wY8XvyZ-G8HX1DVp0ta3WRybbmWwCXsbN00qImxjdC_-epO0m04QhD6UQkvIbXPObe45F6E76_GW-z4jStCMBIYgEBCBILyhDH1XYSCF1Tv3UtF-DZ5HfFSJ1Z0WRmvtis-0Z0_dXr6aZgv7q8x84VFk4C3cRFsG-LlfyrVWC28UBtE2uq1sNO87SXMw6AfWftLkgZR7y9vXGqk4HGnto3Q5grJ85MNbFNLLPn-ZM_57iAeo_i3Zw_0VGB2iDT05Qns_3AaPkW2xQ1JdPOAmTqakqWBm1zrs4Mo8A1deq284LWvDsSG0-DHpEBND-zYo7Kw85mvm3nU0bD0NkzapuiqQ95gVhk2rWHGlIIwYy3JdHhQgNpmYCmOAhh9BHDSAAhM5h0wyyiAHDsykHpSdoNpkOtGnCEtDtSRlWWgV9TkVwGWUG7LuhyLOZQZnqG4naDwrfTPGy7k5_-P6DdppD3vdcbeTvlygXRszVyMjLlGtmC_0lYH_Ql67oH8B0J2tRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=CAT-Net%3A+A+Co-Adaptive+Transfer+Learning+Network+for+BCI-Assisted+Neurorehabilitation&rft.au=Zhang%2C+Shuailei&rft.au=Ding%2C+Yi&rft.au=Jiang%2C+Muyun&rft.au=Tang%2C+Ning&rft.date=2025-04-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49660.2025.10889107&rft.externalDocID=10889107