CAT-Net: A Co-Adaptive Transfer Learning Network for BCI-Assisted Neurorehabilitation
Brain-computer interfaces (BCIs) hold great potential for motor recovery in post-stroke patients. However, the motor imagery decoding accuracy is limited by the non-stationarity of EEG signals across subjects and sessions. We propose CAT-Net: a Co-Adaptive Transfer learning network to simultaneously...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 1 - 5 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
06.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain-computer interfaces (BCIs) hold great potential for motor recovery in post-stroke patients. However, the motor imagery decoding accuracy is limited by the non-stationarity of EEG signals across subjects and sessions. We propose CAT-Net: a Co-Adaptive Transfer learning network to simultaneously address the inter-subject variability and inter-session nonstationarity in EEG data. The proposed method selects a relevant subset of data from all the available subjects' data to train an initial model, followed by subject-specific transfer learning from the initial model to the target subject to establish a pretrain model. Subsequently, online adaptive training is then applied to incrementally train the pretrain model using the data from previous sessions for the target subject. This proposed network using this unique co-adaptive training method is then evaluated on both upper and lower-limb neurorehabilitation EEG datasets comprising 358 sessions from 33 stroke patients. The results showed significant accuracy improvements, achieving averaged accuracies of 70.6% and 72.3% on the respective datasets, surpassing the state-of-the-art baselines. |
---|---|
AbstractList | Brain-computer interfaces (BCIs) hold great potential for motor recovery in post-stroke patients. However, the motor imagery decoding accuracy is limited by the non-stationarity of EEG signals across subjects and sessions. We propose CAT-Net: a Co-Adaptive Transfer learning network to simultaneously address the inter-subject variability and inter-session nonstationarity in EEG data. The proposed method selects a relevant subset of data from all the available subjects' data to train an initial model, followed by subject-specific transfer learning from the initial model to the target subject to establish a pretrain model. Subsequently, online adaptive training is then applied to incrementally train the pretrain model using the data from previous sessions for the target subject. This proposed network using this unique co-adaptive training method is then evaluated on both upper and lower-limb neurorehabilitation EEG datasets comprising 358 sessions from 33 stroke patients. The results showed significant accuracy improvements, achieving averaged accuracies of 70.6% and 72.3% on the respective datasets, surpassing the state-of-the-art baselines. |
Author | Ding, Yi Chew, Effie Guan, Cuntai Jiang, Muyun Zhang, Shuailei Tang, Ning Ang, Kai Keng |
Author_xml | – sequence: 1 givenname: Shuailei surname: Zhang fullname: Zhang, Shuailei email: shuailei.zhang@ntu.edu.sg organization: Nanyang Technological University,College of Computing and Data Science,Singapore – sequence: 2 givenname: Yi surname: Ding fullname: Ding, Yi email: yi.ding@ntu.edu.sg organization: Nanyang Technological University,College of Computing and Data Science,Singapore – sequence: 3 givenname: Muyun surname: Jiang fullname: Jiang, Muyun email: james.jiang@ntu.edu.sg organization: Nanyang Technological University,College of Computing and Data Science,Singapore – sequence: 4 givenname: Ning surname: Tang fullname: Tang, Ning email: ning_tang@nuhs.edu.sg organization: National University Hospital,Singapore – sequence: 5 givenname: Effie surname: Chew fullname: Chew, Effie email: effie_chew@nuhs.edu.sg organization: National University Hospital National University of Singapore,Singapore – sequence: 6 givenname: Kai Keng surname: Ang fullname: Ang, Kai Keng email: kkang@i2r.a-star.edu.sg organization: Agency for Science, Technology and Research Nanyang Technological University,Singapore – sequence: 7 givenname: Cuntai surname: Guan fullname: Guan, Cuntai email: ctguan@ntu.edu.sg organization: Nanyang Technological University,College of Computing and Data Science,Singapore |
BookMark | eNo1kN1KAzEUhKMo2Na-gRfxAVJPkt1Njnfr4k-hqNAVvCunTVajdbckq-Lbu1CFgbn4hmGYMTtqu9Yzdi5hJiXgxbwql8vHDIsCZgpUPpNgLUowB2yKBq3OQRfWZPKQjZQ2KCTC8wkbp_QGAAOwI_ZUlbW49_0lL3nVidLRrg9fnteR2tT4yBeeYhvaFz6Evrv4zpsu8qtqLsqUQuq9G8Bn7KJ_pXXYhp760LWn7LihbfLTP5-w-ua6ru7E4uF2WL0QAXUvjHHocufIWK03jd9LESGqzBkkAmkJMyBFumhy2qy10tRQTtpkRukJO9vXBu_9ahfDB8Wf1f8L-hfvD1Tk |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/ICASSP49660.2025.10889107 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350368741 |
EISSN | 2379-190X |
EndPage | 5 |
ExternalDocumentID | 10889107 |
Genre | orig-research |
GroupedDBID | 23M 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i93t-77d9d5dda7833cfecfecfe2aa9924d79aa018a940a2a36f5acb323afa5a374723 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 30 06:15:27 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-77d9d5dda7833cfecfecfe2aa9924d79aa018a940a2a36f5acb323afa5a374723 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10889107 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-6 |
PublicationDateYYYYMMDD | 2025-04-06 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-6 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) |
PublicationTitleAbbrev | ICASSP |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0008748 |
Score | 2.2880836 |
Snippet | Brain-computer interfaces (BCIs) hold great potential for motor recovery in post-stroke patients. However, the motor imagery decoding accuracy is limited by... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Adaptation models Brain modeling Data models Electroencephalography Motors Neurorehabilitation Stroke (medical condition) Training Transfer learning |
Title | CAT-Net: A Co-Adaptive Transfer Learning Network for BCI-Assisted Neurorehabilitation |
URI | https://ieeexplore.ieee.org/document/10889107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uD6Ivfk38JoKvqWvSpq1vszg2wTLYhL2NmyYVEdYxuhd_vTdpN50gCH0ohX6Q2-acm95zLiF31uOt8H3BtOQ5C5AgMJCBZGFXI33XUaCk1Tu_ZHLwGjxPw2kjVndaGGOMKz4znt11__J1ma_sUhl-4XGM8Ba1SAszt1qstZl24yiId8ltY6J5P0x74_EosOaTmAXy0FufvNVGxaFI_4Bk6_vXxSMf3qpSXv75y5rx3w94SDrfgj062kDREdkx82Oy_8Nr8ITYBjssM9UD7dG0ZD0NCzvTUQdWeA3aOK2-0ayuDKdIZ-ljOmQYQfsuaOqMPJZb1t4dMuk_TdIBa3oqsPdEVMildaJDrSGKhcgLU28cIME8TEcJQNePIQm6wEHIIoRcCS6ggBAEJh5cnJL2vJybM0IVEi3FRR5ZPX3BJYQqLpCq-5FMCpXDOenYAZotateM2XpsLv44fkn2bJxcVYy8Iu1quTLXCPiVunGB_gLC4an9 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06wY8XvyZ-G8HX1DVp0ta3WRybbmWwCXsbN00qImxjdC_-epO0m04QhD6UQkvIbXPObe45F6E76_GW-z4jStCMBIYgEBCBILyhDH1XYSCF1Tv3UtF-DZ5HfFSJ1Z0WRmvtis-0Z0_dXr6aZgv7q8x84VFk4C3cRFsG-LlfyrVWC28UBtE2uq1sNO87SXMw6AfWftLkgZR7y9vXGqk4HGnto3Q5grJ85MNbFNLLPn-ZM_57iAeo_i3Zw_0VGB2iDT05Qns_3AaPkW2xQ1JdPOAmTqakqWBm1zrs4Mo8A1deq284LWvDsSG0-DHpEBND-zYo7Kw85mvm3nU0bD0NkzapuiqQ95gVhk2rWHGlIIwYy3JdHhQgNpmYCmOAhh9BHDSAAhM5h0wyyiAHDsykHpSdoNpkOtGnCEtDtSRlWWgV9TkVwGWUG7LuhyLOZQZnqG4naDwrfTPGy7k5_-P6DdppD3vdcbeTvlygXRszVyMjLlGtmC_0lYH_Ql67oH8B0J2tRg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=CAT-Net%3A+A+Co-Adaptive+Transfer+Learning+Network+for+BCI-Assisted+Neurorehabilitation&rft.au=Zhang%2C+Shuailei&rft.au=Ding%2C+Yi&rft.au=Jiang%2C+Muyun&rft.au=Tang%2C+Ning&rft.date=2025-04-06&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICASSP49660.2025.10889107&rft.externalDocID=10889107 |