An Evolutionary Metagraph Approach for Solving Problems in Complex Subject Areas

This paper explores the integration of metagraphs with genetic programming (GP), offering a novel perspective aimed at overcoming the limitations of traditional graph-based approaches. Metagraphs, providing an advanced abstraction over standard graphs, are examined for their potential to more effici...

Full description

Saved in:
Bibliographic Details
Published inInternational Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE ...) (Online) pp. 1 - 6
Main Authors Nardid, Anatoly N., Vinnikov, Stepan S., Orazov, Alexey V., Gapanyuk, Yuriy E.
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.04.2025
Subjects
Online AccessGet full text
ISSN2831-7262
DOI10.1109/REEPE63962.2025.10970829

Cover

Loading…
Abstract This paper explores the integration of metagraphs with genetic programming (GP), offering a novel perspective aimed at overcoming the limitations of traditional graph-based approaches. Metagraphs, providing an advanced abstraction over standard graphs, are examined for their potential to more efficiently encapsulate complex relationships and hierarchical structures. The focus is on how metagraphs can contribute to evolutionary algorithms by enriching the representation of problem spaces, potentially leading to improved adaptability and precision in solutions. We discuss the initial theoretical insights and potential benefits of this integration, positioning metagraphs as a promising tool for enhancing the effectiveness of evolutionary strategies. This exploration is intended to pave new research pathways in GP, proposing that metagraphs hold the potential to significantly augment the outcomes of evolutionary processes.
AbstractList This paper explores the integration of metagraphs with genetic programming (GP), offering a novel perspective aimed at overcoming the limitations of traditional graph-based approaches. Metagraphs, providing an advanced abstraction over standard graphs, are examined for their potential to more efficiently encapsulate complex relationships and hierarchical structures. The focus is on how metagraphs can contribute to evolutionary algorithms by enriching the representation of problem spaces, potentially leading to improved adaptability and precision in solutions. We discuss the initial theoretical insights and potential benefits of this integration, positioning metagraphs as a promising tool for enhancing the effectiveness of evolutionary strategies. This exploration is intended to pave new research pathways in GP, proposing that metagraphs hold the potential to significantly augment the outcomes of evolutionary processes.
Author Vinnikov, Stepan S.
Orazov, Alexey V.
Nardid, Anatoly N.
Gapanyuk, Yuriy E.
Author_xml – sequence: 1
  givenname: Anatoly N.
  surname: Nardid
  fullname: Nardid, Anatoly N.
  email: nardid@bmstu.ru
  organization: Bauman Moscow State Technical University,Information Processing and Management Systems Department,Moscow,Russian Federation
– sequence: 2
  givenname: Stepan S.
  surname: Vinnikov
  fullname: Vinnikov, Stepan S.
  email: vinnikovss@student.bmstu.ru
  organization: Bauman Moscow State Technical University,Information Processing and Management Systems Department,Moscow,Russian Federation
– sequence: 3
  givenname: Alexey V.
  surname: Orazov
  fullname: Orazov, Alexey V.
  email: orazovav@student.bmstu.ru
  organization: Bauman Moscow State Technical University,Information Processing and Management Systems Department,Moscow,Russian Federation
– sequence: 4
  givenname: Yuriy E.
  surname: Gapanyuk
  fullname: Gapanyuk, Yuriy E.
  email: gapyu@bmstu.ru
  organization: Bauman Moscow State Technical University,Information Processing and Management Systems Department,Moscow,Russian Federation
BookMark eNo10FFLwzAUBeAoCs7Zf-BD_sBmcm-b5j6WUZ0wcbi9j7RLto62KWk39N9bUZ8OnIfDx7lnN61vLWNcirmUgp4-8nydKyQFcxCQzMcuFRroikWUkkaUCUqN6ppNQKOcpaDgjkV9fxJCIIhYEk3YOmt5fvH1eah8a8IXf7ODOQTTHXnWdcGb8sidD3zj60vVHvg6-KK2Tc-rli9809X2k2_OxcmWA8-CNf0Du3Wm7m30l1O2fc63i-Vs9f7yushWs4pw-ME4u48dahkXjhxJJQTRPi1QQ6oMKiDEGBIDpVZaGxRQAMpSJU7A6J-yx9_Zylq760LVjPjd_wf4DYZAUZE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/REEPE63962.2025.10970829
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331531836
EISSN 2831-7262
EndPage 6
ExternalDocumentID 10970829
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-726fed4f3814bf9f9160099d7b38276a362933425a2c8688a302b231c65f02003
IEDL.DBID RIE
IngestDate Thu May 29 05:57:36 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-726fed4f3814bf9f9160099d7b38276a362933425a2c8688a302b231c65f02003
PageCount 6
ParticipantIDs ieee_primary_10970829
PublicationCentury 2000
PublicationDate 2025-April-8
PublicationDateYYYYMMDD 2025-04-08
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-8
  day: 08
PublicationDecade 2020
PublicationTitle International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE ...) (Online)
PublicationTitleAbbrev REEPE
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204199
Score 1.9072107
Snippet This paper explores the integration of metagraphs with genetic programming (GP), offering a novel perspective aimed at overcoming the limitations of...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Benchmark testing
cartesian genetic programming (CGP)
Complexity theory
Directed acyclic graph
directed acyclic graphs (DAGs)
evolutionary algorithms
Evolutionary computation
Genetic programming
linear genetic programming (LGP)
metagraphs
Power engineering
Reproducibility of results
Title An Evolutionary Metagraph Approach for Solving Problems in Complex Subject Areas
URI https://ieeexplore.ieee.org/document/10970829
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7bdUmaJschHUPYGDpht5GkCQxHJ7Mb6l9vXtZOFARvpdAS8tJ8X1--7z2E7lKptJCKRISmScQMEZGyxv-qcM9ONNXEFuBGHo358Jk9zNJZbVYPXhhrbRCf2Rguw1l-sTIbSJV14bQUvKAt1PLrbGfW2idUKElYT8pGrZPI7mOeT3KPwBwMVySNm8d_NFIJODI4QuNmBDv5yEu8qXRsPn8VZ_z3EI9R59uyhyd7MDpBB7Y8RZN-ifNtvbjU-gOPbKVCiWrcr2uJY09a8dNqCXkFeAF0l3nDixLDRrG079jvLJCqwX1Qr3fQdJBP74dR3UIhWkhaRRnhzhbMeVhm2knnuSBQwiLTVJCMK49eklL_2SpiBBdC0YRoz_gMT10CsrUz1C5XpT1HWGfWQFB7aWYYY04xY4TW2jrGix4XF6gDszF_3RXJmDcTcfnH_St0CEEJIhhxjdrVemNvPL5X-jbE9QvTk6PZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_DarsuvJschHVO3MXTCbiNJUxhKJ7MT9a83r2snCoK30kMIeU2-ry_f9x5CV1xpI5UmAaE8CpglMtDO-l8V4dmJoYa4FNzIg6HoPbLbCZ9UZvXSC-OcK8VnLoTH8i4_ndslpMpacFsKXtBNtOWBn_GVXWudUqEkYm2lar1OpFr3STJKPAYLsFwRHtYD_GilUiJJdxcN6zmsBCRP4bIwof38VZ7x35PcQ81v0x4ereFoH224_ACNOjlO3qrPSy8-8MAVuixSjTtVNXHsaSt-mD9DZgEGgP4yr3iWYzgqnt079mcLJGtwB_TrTTTuJuPrXlA1UQhmihZBTETmUpZ5YGYmU5lng0AK09hQSWKhPX4pSv3G1cRKIaWmETGe81nBswiEa4eokc9zd4SwiZ2FsLZ5bBljmWbWSmOMy5hI20IeoyasxvRlVSZjWi_EyR_vL9F2bzzoT_s3w7tTtAMBKiUx8gw1isXSnXu0L8xFGeMvmmenJg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Youth+Conference+on+Radio+Electronics%2C+Electrical+and+Power+Engineering+%28REEPE+...%29+%28Online%29&rft.atitle=An+Evolutionary+Metagraph+Approach+for+Solving+Problems+in+Complex+Subject+Areas&rft.au=Nardid%2C+Anatoly+N.&rft.au=Vinnikov%2C+Stepan+S.&rft.au=Orazov%2C+Alexey+V.&rft.au=Gapanyuk%2C+Yuriy+E.&rft.date=2025-04-08&rft.pub=IEEE&rft.eissn=2831-7262&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FREEPE63962.2025.10970829&rft.externalDocID=10970829