An Evolutionary Metagraph Approach for Solving Problems in Complex Subject Areas
This paper explores the integration of metagraphs with genetic programming (GP), offering a novel perspective aimed at overcoming the limitations of traditional graph-based approaches. Metagraphs, providing an advanced abstraction over standard graphs, are examined for their potential to more effici...
Saved in:
Published in | International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE ...) (Online) pp. 1 - 6 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2831-7262 |
DOI | 10.1109/REEPE63962.2025.10970829 |
Cover
Loading…
Abstract | This paper explores the integration of metagraphs with genetic programming (GP), offering a novel perspective aimed at overcoming the limitations of traditional graph-based approaches. Metagraphs, providing an advanced abstraction over standard graphs, are examined for their potential to more efficiently encapsulate complex relationships and hierarchical structures. The focus is on how metagraphs can contribute to evolutionary algorithms by enriching the representation of problem spaces, potentially leading to improved adaptability and precision in solutions. We discuss the initial theoretical insights and potential benefits of this integration, positioning metagraphs as a promising tool for enhancing the effectiveness of evolutionary strategies. This exploration is intended to pave new research pathways in GP, proposing that metagraphs hold the potential to significantly augment the outcomes of evolutionary processes. |
---|---|
AbstractList | This paper explores the integration of metagraphs with genetic programming (GP), offering a novel perspective aimed at overcoming the limitations of traditional graph-based approaches. Metagraphs, providing an advanced abstraction over standard graphs, are examined for their potential to more efficiently encapsulate complex relationships and hierarchical structures. The focus is on how metagraphs can contribute to evolutionary algorithms by enriching the representation of problem spaces, potentially leading to improved adaptability and precision in solutions. We discuss the initial theoretical insights and potential benefits of this integration, positioning metagraphs as a promising tool for enhancing the effectiveness of evolutionary strategies. This exploration is intended to pave new research pathways in GP, proposing that metagraphs hold the potential to significantly augment the outcomes of evolutionary processes. |
Author | Vinnikov, Stepan S. Orazov, Alexey V. Nardid, Anatoly N. Gapanyuk, Yuriy E. |
Author_xml | – sequence: 1 givenname: Anatoly N. surname: Nardid fullname: Nardid, Anatoly N. email: nardid@bmstu.ru organization: Bauman Moscow State Technical University,Information Processing and Management Systems Department,Moscow,Russian Federation – sequence: 2 givenname: Stepan S. surname: Vinnikov fullname: Vinnikov, Stepan S. email: vinnikovss@student.bmstu.ru organization: Bauman Moscow State Technical University,Information Processing and Management Systems Department,Moscow,Russian Federation – sequence: 3 givenname: Alexey V. surname: Orazov fullname: Orazov, Alexey V. email: orazovav@student.bmstu.ru organization: Bauman Moscow State Technical University,Information Processing and Management Systems Department,Moscow,Russian Federation – sequence: 4 givenname: Yuriy E. surname: Gapanyuk fullname: Gapanyuk, Yuriy E. email: gapyu@bmstu.ru organization: Bauman Moscow State Technical University,Information Processing and Management Systems Department,Moscow,Russian Federation |
BookMark | eNo10FFLwzAUBeAoCs7Zf-BD_sBmcm-b5j6WUZ0wcbi9j7RLto62KWk39N9bUZ8OnIfDx7lnN61vLWNcirmUgp4-8nydKyQFcxCQzMcuFRroikWUkkaUCUqN6ppNQKOcpaDgjkV9fxJCIIhYEk3YOmt5fvH1eah8a8IXf7ODOQTTHXnWdcGb8sidD3zj60vVHvg6-KK2Tc-rli9809X2k2_OxcmWA8-CNf0Du3Wm7m30l1O2fc63i-Vs9f7yushWs4pw-ME4u48dahkXjhxJJQTRPi1QQ6oMKiDEGBIDpVZaGxRQAMpSJU7A6J-yx9_Zylq760LVjPjd_wf4DYZAUZE |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/REEPE63962.2025.10970829 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798331531836 |
EISSN | 2831-7262 |
EndPage | 6 |
ExternalDocumentID | 10970829 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-726fed4f3814bf9f9160099d7b38276a362933425a2c8688a302b231c65f02003 |
IEDL.DBID | RIE |
IngestDate | Thu May 29 05:57:36 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-726fed4f3814bf9f9160099d7b38276a362933425a2c8688a302b231c65f02003 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10970829 |
PublicationCentury | 2000 |
PublicationDate | 2025-April-8 |
PublicationDateYYYYMMDD | 2025-04-08 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-April-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE ...) (Online) |
PublicationTitleAbbrev | REEPE |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003204199 |
Score | 1.9072107 |
Snippet | This paper explores the integration of metagraphs with genetic programming (GP), offering a novel perspective aimed at overcoming the limitations of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Benchmark testing cartesian genetic programming (CGP) Complexity theory Directed acyclic graph directed acyclic graphs (DAGs) evolutionary algorithms Evolutionary computation Genetic programming linear genetic programming (LGP) metagraphs Power engineering Reproducibility of results |
Title | An Evolutionary Metagraph Approach for Solving Problems in Complex Subject Areas |
URI | https://ieeexplore.ieee.org/document/10970829 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7bdUmaJschHUPYGDpht5GkCQxHJ7Mb6l9vXtZOFARvpdAS8tJ8X1--7z2E7lKptJCKRISmScQMEZGyxv-qcM9ONNXEFuBGHo358Jk9zNJZbVYPXhhrbRCf2Rguw1l-sTIbSJV14bQUvKAt1PLrbGfW2idUKElYT8pGrZPI7mOeT3KPwBwMVySNm8d_NFIJODI4QuNmBDv5yEu8qXRsPn8VZ_z3EI9R59uyhyd7MDpBB7Y8RZN-ifNtvbjU-gOPbKVCiWrcr2uJY09a8dNqCXkFeAF0l3nDixLDRrG079jvLJCqwX1Qr3fQdJBP74dR3UIhWkhaRRnhzhbMeVhm2knnuSBQwiLTVJCMK49eklL_2SpiBBdC0YRoz_gMT10CsrUz1C5XpT1HWGfWQFB7aWYYY04xY4TW2jrGix4XF6gDszF_3RXJmDcTcfnH_St0CEEJIhhxjdrVemNvPL5X-jbE9QvTk6PZ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA46D3pSceJvc_DarsuvJschHVO3MXTCbiNJUxhKJ7MT9a83r2snCoK30kMIeU2-ry_f9x5CV1xpI5UmAaE8CpglMtDO-l8V4dmJoYa4FNzIg6HoPbLbCZ9UZvXSC-OcK8VnLoTH8i4_ndslpMpacFsKXtBNtOWBn_GVXWudUqEkYm2lar1OpFr3STJKPAYLsFwRHtYD_GilUiJJdxcN6zmsBCRP4bIwof38VZ7x35PcQ81v0x4ereFoH224_ACNOjlO3qrPSy8-8MAVuixSjTtVNXHsaSt-mD9DZgEGgP4yr3iWYzgqnt079mcLJGtwB_TrTTTuJuPrXlA1UQhmihZBTETmUpZ5YGYmU5lng0AK09hQSWKhPX4pSv3G1cRKIaWmETGe81nBswiEa4eokc9zd4SwiZ2FsLZ5bBljmWbWSmOMy5hI20IeoyasxvRlVSZjWi_EyR_vL9F2bzzoT_s3w7tTtAMBKiUx8gw1isXSnXu0L8xFGeMvmmenJg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Youth+Conference+on+Radio+Electronics%2C+Electrical+and+Power+Engineering+%28REEPE+...%29+%28Online%29&rft.atitle=An+Evolutionary+Metagraph+Approach+for+Solving+Problems+in+Complex+Subject+Areas&rft.au=Nardid%2C+Anatoly+N.&rft.au=Vinnikov%2C+Stepan+S.&rft.au=Orazov%2C+Alexey+V.&rft.au=Gapanyuk%2C+Yuriy+E.&rft.date=2025-04-08&rft.pub=IEEE&rft.eissn=2831-7262&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FREEPE63962.2025.10970829&rft.externalDocID=10970829 |