The Joy of Co-Painting: Creative Human-AI Collaboration for Traceable Image-Generation Workflows

Image-generative models have gained popularity over the last years with their ability to create realistic artwork. Realizing complex artworks with specific creative ideas often requires iterative optimization of specialized prompts, but may still result in inadequate images. The inclusion of referen...

Full description

Saved in:
Bibliographic Details
Published inIEEE Pacific Visualization Symposium pp. 318 - 328
Main Authors Satkunarajan, Jena, Koch, Steffen, Kurzhals, Kuno
Format Conference Proceeding
LanguageEnglish
Published IEEE 22.04.2025
Subjects
Online AccessGet full text
ISSN2165-8773
DOI10.1109/PacificVis64226.2025.00038

Cover

Abstract Image-generative models have gained popularity over the last years with their ability to create realistic artwork. Realizing complex artworks with specific creative ideas often requires iterative optimization of specialized prompts, but may still result in inadequate images. The inclusion of reference images and adapting modelspecific parameters can help in steering the model and fostering the creative intent of the user. But by providing text prompts, initial images, and adapting model parameters, users face a vast design space for creating images. To navigate through this space, we propose a visualization approach that combines an interactive Provenance Graph, parameter visualizations, and high-dimensional embeddings. Our approach helps pursue multiple parallel creation paths, makes workflows traceable and parameter changes transparent, and facilitates the reporting of image editing steps. In addition to prompt formulation, we focus on targeted generation by probing parameters, image compositions, and editing details. We integrate the generative process into existing image editing software, enabling users to compose artwork in collaboration with the model. The presented approach is evaluated in a user experiment (\mathrm{n}=9) for generating artwork. The results show that users with different levels of experience can create targeted artwork but use different strategies when working with the Provenance Graph.
AbstractList Image-generative models have gained popularity over the last years with their ability to create realistic artwork. Realizing complex artworks with specific creative ideas often requires iterative optimization of specialized prompts, but may still result in inadequate images. The inclusion of reference images and adapting modelspecific parameters can help in steering the model and fostering the creative intent of the user. But by providing text prompts, initial images, and adapting model parameters, users face a vast design space for creating images. To navigate through this space, we propose a visualization approach that combines an interactive Provenance Graph, parameter visualizations, and high-dimensional embeddings. Our approach helps pursue multiple parallel creation paths, makes workflows traceable and parameter changes transparent, and facilitates the reporting of image editing steps. In addition to prompt formulation, we focus on targeted generation by probing parameters, image compositions, and editing details. We integrate the generative process into existing image editing software, enabling users to compose artwork in collaboration with the model. The presented approach is evaluated in a user experiment (\mathrm{n}=9) for generating artwork. The results show that users with different levels of experience can create targeted artwork but use different strategies when working with the Provenance Graph.
Author Kurzhals, Kuno
Satkunarajan, Jena
Koch, Steffen
Author_xml – sequence: 1
  givenname: Jena
  surname: Satkunarajan
  fullname: Satkunarajan, Jena
  email: jena.satkunarajan@vis.uni-stuttgart.de
  organization: VISUS, University of Stuttgart,Germany
– sequence: 2
  givenname: Steffen
  surname: Koch
  fullname: Koch, Steffen
  email: steffen.koch@vis.uni-stuttgart.de
  organization: VISUS, University of Stuttgart,Germany
– sequence: 3
  givenname: Kuno
  surname: Kurzhals
  fullname: Kurzhals, Kuno
  email: kuno.kurzhals@visus.uni-stuttgart.de
  organization: VISUS, University of Stuttgart,Germany
BookMark eNotkE1LAzEYhKMoWGv_gYfgfWs-mi9vZbEfUrCHRY_13fRNjW43kq1K_70L9jQwzzAMc00u2tQiIXecjTln7n4NPoboX2KnJ0LosWBCjRlj0p6RkTPOSskVU5bLczIQXKvCGiOvyKjrPvoYcxOurB6Qt-od6VM60hRomYo1xPYQ290DLTPCIf4gXXzvoS2myx43DdQp93ZqaUiZVhk8Qt0gXe5hh8UcWzzh15Q_Q5N-uxtyGaDpcHTSIalmj1W5KFbP82U5XRXRyUOhvVcMJdPeeheEBTCaa1_3o5Vl1jjOkYWtFsIrboSsTV1PPAMIrt6C1HJIbv9rIyJuvnLcQz5u-qsEZ0bJP0nOWdE
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PacificVis64226.2025.00038
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798331505813
EISSN 2165-8773
EndPage 328
ExternalDocumentID 11021075
Genre orig-research
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: 10.13039/501100001659
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-6cc50e306c8c9f28aa7616cb87758087911e0fd622c51723b7bb4c0aaf9bda363
IEDL.DBID RIE
IngestDate Wed Aug 27 01:43:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-6cc50e306c8c9f28aa7616cb87758087911e0fd622c51723b7bb4c0aaf9bda363
PageCount 11
ParticipantIDs ieee_primary_11021075
PublicationCentury 2000
PublicationDate 2025-April-22
PublicationDateYYYYMMDD 2025-04-22
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-April-22
  day: 22
PublicationDecade 2020
PublicationTitle IEEE Pacific Visualization Symposium
PublicationTitleAbbrev PACIFICVIS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000941586
Score 2.2886388
Snippet Image-generative models have gained popularity over the last years with their ability to create realistic artwork. Realizing complex artworks with specific...
SourceID ieee
SourceType Publisher
StartPage 318
SubjectTerms Adaptation models
Collaboration
Computational modeling
Faces
Human computer interaction
Human-centered computing
Iterative methods
Navigation
Optimization
Software
Visualization
Visualization techniques
Title The Joy of Co-Painting: Creative Human-AI Collaboration for Traceable Image-Generation Workflows
URI https://ieeexplore.ieee.org/document/11021075
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62J734qvgmB69ps7vdbNabLJa2YOmhSm81j1koaldsq-ivd5Ld1iII3pYsgZAM883rmyHkStg4UTFoFucuzai4ZdpGluFi2paGB9bPIbsbiO59uz-OxxVZ3XNhAMAXn0HTffpcvi3M0oXKWoGbQ40YVyM1lLOSrLUOqKCfEsRSVI1FA562qrK2h-lcOL4oOoOhC6Bwx0XZGKXikaSzSwarM5QFJE_N5UI3zdev9oz_PuQeafyQ9uhwDUf7ZAtmB2Rno9_gIXlEoaD94pMWOc0KNlRTPyfimmbedHwH6mP67KZHs035oGjZUkQ1A45oRXsvqIRY2bDa_3YR9_y5-Jg3yKhzO8q6rBqxwKZptGDCmJgDeg1GmjQPpVKJCITRMkE3gssENSHw3IowNDFaOpFOtG4brlSeaqsiER2R-qyYwTGhWocIh6j5cS8aeVIqIVJINUgLSZDDCWm4u5q8lk00JqtrOv1j_Yxsu_dyiZswPCf1xdsSLhD_F_rSv_s3F8iwHw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD-rFV8W3OXhNu69ks95ksbS1LT1U6a3mtVDUrthW0V_vJLutRRC8hYSFkB3mm9c3g9AV0zQW1EhCM5tmFJ4mUoeawGYSceX52s0h6_ZY8z5qD-mwJKs7LowxxhWfmZpduly-ztXchsrqvp1DDRi3jjYA-CNa0LWWIRXwVHzKWdla1PeSelnY9jCeMssYBXcwsCEUz7JRVoapOCxp7KDe4hZFCclTbT6TNfX1q0Hjv6-5i6o_tD3cXwLSHlozk320vdJx8AA9gljgdv6J8wynOemLsZsUcY1TZzy-G-yi-uSmhdNVCcFg22LANWUs1Qq3XkANkaJltTu2MffsOf-YVtGgcTtIm6QcskDGSTgjTCnqGfAbFFdJFnAhYuYzJXkMjoTHY9CFxss0CwJFwdYJZSxlpDwhskRqEbLwEFUm-cQcISxlAIAIuh--BTOPc8FYYhJpuDaxn5ljVLVvNXot2miMFs908sf-JdpsDrqdUafVuztFW_bf2TROEJyhyuxtbs7BGpjJCycD337Ws2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+Pacific+Visualization+Symposium&rft.atitle=The+Joy+of+Co-Painting%3A+Creative+Human-AI+Collaboration+for+Traceable+Image-Generation+Workflows&rft.au=Satkunarajan%2C+Jena&rft.au=Koch%2C+Steffen&rft.au=Kurzhals%2C+Kuno&rft.date=2025-04-22&rft.pub=IEEE&rft.eissn=2165-8773&rft.spage=318&rft.epage=328&rft_id=info:doi/10.1109%2FPacificVis64226.2025.00038&rft.externalDocID=11021075