Semi-Supervised Deep Learning Models for Automatic Identification of Benthic Fauna

This paper explores the automatic classification of benthic fauna, specifically copepoda, which play a crucial role in aquatic ecosystems. Given the challenge of limited labeled data, we investigate the use of semi-supervised learning (SSL) to improve classification performance. We evaluate multiple...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Bio-engineering for Smart Technologies (Online) pp. 1 - 4
Main Authors Pouresmaeil, Mahdieh, Benzinou, Abdesslam, Nasreddine, Kamal, Foulon, Valentin, Borremans, Catherine, Zeppilli, Daniela
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.05.2025
Subjects
Online AccessGet full text
ISSN2831-4352
DOI10.1109/BioSMART66413.2025.11046079

Cover

Abstract This paper explores the automatic classification of benthic fauna, specifically copepoda, which play a crucial role in aquatic ecosystems. Given the challenge of limited labeled data, we investigate the use of semi-supervised learning (SSL) to improve classification performance. We evaluate multiple deep learning models, including ResNet and DenseNet architectures, under both supervised and semi-supervised frameworks. DenseNet201 achieved the best performance, with an accuracy of 91.81% when trained on a small labeled set and 100.0% when trained on a larger dataset. Remarkably, SSL reached 100.0% accuracy using only the small labeled set, demonstrating its effectiveness in leveraging unlabeled data. This highlights a key motivation for employing SSL: improving classification accuracy when labeled data are scarce. By integrating pseudo-labeling our approach significantly enhances classification accuracy. These results highlight the potential of SSL for ecological studies, providing an effective tool for automated species classification while reducing reliance on large labeled datasets. The findings contribute to advancing environmental monitoring techniques and open new opportunities for further research in marine biodiversity analysis.
AbstractList This paper explores the automatic classification of benthic fauna, specifically copepoda, which play a crucial role in aquatic ecosystems. Given the challenge of limited labeled data, we investigate the use of semi-supervised learning (SSL) to improve classification performance. We evaluate multiple deep learning models, including ResNet and DenseNet architectures, under both supervised and semi-supervised frameworks. DenseNet201 achieved the best performance, with an accuracy of 91.81% when trained on a small labeled set and 100.0% when trained on a larger dataset. Remarkably, SSL reached 100.0% accuracy using only the small labeled set, demonstrating its effectiveness in leveraging unlabeled data. This highlights a key motivation for employing SSL: improving classification accuracy when labeled data are scarce. By integrating pseudo-labeling our approach significantly enhances classification accuracy. These results highlight the potential of SSL for ecological studies, providing an effective tool for automated species classification while reducing reliance on large labeled datasets. The findings contribute to advancing environmental monitoring techniques and open new opportunities for further research in marine biodiversity analysis.
Author Foulon, Valentin
Zeppilli, Daniela
Nasreddine, Kamal
Pouresmaeil, Mahdieh
Benzinou, Abdesslam
Borremans, Catherine
Author_xml – sequence: 1
  givenname: Mahdieh
  surname: Pouresmaeil
  fullname: Pouresmaeil, Mahdieh
  organization: ENIB, UMR CNRS 6285 LabSTICC,Brest,France,29238
– sequence: 2
  givenname: Abdesslam
  surname: Benzinou
  fullname: Benzinou, Abdesslam
  organization: ENIB, UMR CNRS 6285 LabSTICC,Brest,France,29238
– sequence: 3
  givenname: Kamal
  surname: Nasreddine
  fullname: Nasreddine, Kamal
  organization: ENIB, UMR CNRS 6285 LabSTICC,Brest,France,29238
– sequence: 4
  givenname: Valentin
  surname: Foulon
  fullname: Foulon, Valentin
  organization: ENIB, UMR CNRS 6285 LabSTICC,Brest,France,29238
– sequence: 5
  givenname: Catherine
  surname: Borremans
  fullname: Borremans, Catherine
  organization: Ifremer,Plouzané,France,29280
– sequence: 6
  givenname: Daniela
  surname: Zeppilli
  fullname: Zeppilli, Daniela
  organization: Ifremer,Plouzané,France,29280
BookMark eNo1kE1PAjEURavRRED-gYsmrgf7-jXtEhCUBGICLNyRTudVa6AlM4OJ_16Murq55yR3cfvkKuWEhNwDGwEw-zCJebMar7daSxAjzrj64VKz0l6QPmitZGkAXi9JjxsBhRSK35Bh234wxgQH0KbskfUGD7HYnI7YfMYWa_qIeKRLdE2K6Y2uco37lobc0PGpywfXRU8XNaYuhujPLSeaA52cwfvZzN0puVtyHdy-xeFfDsh2PttOn4vly9NiOl4W0Yqu0KUMrtS24h5AuYp5VdVBe-ZqCcF4q4ziWvLgDK8tE64KwVYiSAEueANiQO5-ZyMi7o5NPLjma_d_gfgGPndUvQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BioSMART66413.2025.11046079
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 166547811X
9781665478113
EISSN 2831-4352
EndPage 4
ExternalDocumentID 11046079
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-674fa769b2c115ab0c5bdf6c0ad41f8c95852642fa82d903abff9b3f431afc813
IEDL.DBID RIE
IngestDate Thu Jul 10 06:35:40 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-674fa769b2c115ab0c5bdf6c0ad41f8c95852642fa82d903abff9b3f431afc813
PageCount 4
ParticipantIDs ieee_primary_11046079
PublicationCentury 2000
PublicationDate 2025-May-14
PublicationDateYYYYMMDD 2025-05-14
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-14
  day: 14
PublicationDecade 2020
PublicationTitle International Conference on Bio-engineering for Smart Technologies (Online)
PublicationTitleAbbrev BIOSMART
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211687
Score 1.9104848
Snippet This paper explores the automatic classification of benthic fauna, specifically copepoda, which play a crucial role in aquatic ecosystems. Given the challenge...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Biological system modeling
classification
copepoda
Deep learning
Environmental monitoring
Fauna
semi-supervised learning
Semisupervised learning
Solids
Supervised learning
Training
Title Semi-Supervised Deep Learning Models for Automatic Identification of Benthic Fauna
URI https://ieeexplore.ieee.org/document/11046079
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uD-KTihO_Cehru36kafro1DGEDXET9jaS9KJDbYtrX_zrvbTdREHwraQQklyS-91dfneEXAkj0V7TxgGQxmHSKDxSKTgIvRl4iglZ08fGEz56YvfzaN6S1WsuDADUj8_AtZ91LD_NdWVdZX3fBiS9OOmQDu6zhqy1caiEaMpwEW-TyzaPZn-wzKdjhIWc402NpmAQueseftRSqVXJcJdM1oNoXpC8ulWpXP35Kz_jv0e5R3rfrD36sNFH-2QLsgPyOIX3pTOtCnsnrCCltwAFbbOqPlNbCu1tRRG50uuqzOv8rbQh75rWm0dzQwfY8IJ_hrLKZI_Mhnezm5HT1lFwlklYOjxmRsY8QZEg_JPK05FKDdeeTJlvhE7QYkBYFBgpgjTxQqmMSVRoEFpIo4UfHpJulmdwRCh4LMROdMAizbivE-Fpg1PVgvsqleEx6dn1WBRNpozFeilO_mg_JTtWLDYa77Mz0i0_KjhHJV-qi1q4X9_3p8k
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86QX1SceK3AX1t1480TR-dOqZuQ9yEvY0kvehQ2-HaF_96rx-bKAi-lRRCmqO5393l9ztCLoSRGK9pYwFIYzFpFP5SMVgIvRk4iglZ0sf6A959YnfjYFyT1UsuDACUl8_ALh7LWn6c6rxIlbXcoiDphNEqWUPHz4KKrrVMqfgYzHARrpPzWkmz1Z6mwz4CQ87xrMZg0AvsxRw_uqmUzqSzRQaLZVR3SF7tPFO2_vyl0PjvdW6T5jdvjz4sPdIOWYFklzwO4X1qDfNZcSrMIabXADNa66o-06IZ2tucInall3mWlgqutKLvmjqfR1ND2zjwgm86Mk9kk4w6N6OrrlV3UrCmkZ9ZPGRGhjxCoyAAlMrRgYoN146MmWuEjjBmQGDkGSm8OHJ8qYyJlG8QXEijhevvkUaSJrBPKDjMx0m0xwLNuKsj4WiDn6oFd1Us_QPSLPZjMqu0MiaLrTj8Y_yMbHRH_d6kdzu4PyKbhYmK2rzLjkkj-8jhBF1-pk5LQ38B2lCrFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Bio-engineering+for+Smart+Technologies+%28Online%29&rft.atitle=Semi-Supervised+Deep+Learning+Models+for+Automatic+Identification+of+Benthic+Fauna&rft.au=Pouresmaeil%2C+Mahdieh&rft.au=Benzinou%2C+Abdesslam&rft.au=Nasreddine%2C+Kamal&rft.au=Foulon%2C+Valentin&rft.date=2025-05-14&rft.pub=IEEE&rft.eissn=2831-4352&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FBioSMART66413.2025.11046079&rft.externalDocID=11046079