Semi-Supervised Deep Learning Models for Automatic Identification of Benthic Fauna
This paper explores the automatic classification of benthic fauna, specifically copepoda, which play a crucial role in aquatic ecosystems. Given the challenge of limited labeled data, we investigate the use of semi-supervised learning (SSL) to improve classification performance. We evaluate multiple...
Saved in:
Published in | International Conference on Bio-engineering for Smart Technologies (Online) pp. 1 - 4 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2831-4352 |
DOI | 10.1109/BioSMART66413.2025.11046079 |
Cover
Abstract | This paper explores the automatic classification of benthic fauna, specifically copepoda, which play a crucial role in aquatic ecosystems. Given the challenge of limited labeled data, we investigate the use of semi-supervised learning (SSL) to improve classification performance. We evaluate multiple deep learning models, including ResNet and DenseNet architectures, under both supervised and semi-supervised frameworks. DenseNet201 achieved the best performance, with an accuracy of 91.81% when trained on a small labeled set and 100.0% when trained on a larger dataset. Remarkably, SSL reached 100.0% accuracy using only the small labeled set, demonstrating its effectiveness in leveraging unlabeled data. This highlights a key motivation for employing SSL: improving classification accuracy when labeled data are scarce. By integrating pseudo-labeling our approach significantly enhances classification accuracy. These results highlight the potential of SSL for ecological studies, providing an effective tool for automated species classification while reducing reliance on large labeled datasets. The findings contribute to advancing environmental monitoring techniques and open new opportunities for further research in marine biodiversity analysis. |
---|---|
AbstractList | This paper explores the automatic classification of benthic fauna, specifically copepoda, which play a crucial role in aquatic ecosystems. Given the challenge of limited labeled data, we investigate the use of semi-supervised learning (SSL) to improve classification performance. We evaluate multiple deep learning models, including ResNet and DenseNet architectures, under both supervised and semi-supervised frameworks. DenseNet201 achieved the best performance, with an accuracy of 91.81% when trained on a small labeled set and 100.0% when trained on a larger dataset. Remarkably, SSL reached 100.0% accuracy using only the small labeled set, demonstrating its effectiveness in leveraging unlabeled data. This highlights a key motivation for employing SSL: improving classification accuracy when labeled data are scarce. By integrating pseudo-labeling our approach significantly enhances classification accuracy. These results highlight the potential of SSL for ecological studies, providing an effective tool for automated species classification while reducing reliance on large labeled datasets. The findings contribute to advancing environmental monitoring techniques and open new opportunities for further research in marine biodiversity analysis. |
Author | Foulon, Valentin Zeppilli, Daniela Nasreddine, Kamal Pouresmaeil, Mahdieh Benzinou, Abdesslam Borremans, Catherine |
Author_xml | – sequence: 1 givenname: Mahdieh surname: Pouresmaeil fullname: Pouresmaeil, Mahdieh organization: ENIB, UMR CNRS 6285 LabSTICC,Brest,France,29238 – sequence: 2 givenname: Abdesslam surname: Benzinou fullname: Benzinou, Abdesslam organization: ENIB, UMR CNRS 6285 LabSTICC,Brest,France,29238 – sequence: 3 givenname: Kamal surname: Nasreddine fullname: Nasreddine, Kamal organization: ENIB, UMR CNRS 6285 LabSTICC,Brest,France,29238 – sequence: 4 givenname: Valentin surname: Foulon fullname: Foulon, Valentin organization: ENIB, UMR CNRS 6285 LabSTICC,Brest,France,29238 – sequence: 5 givenname: Catherine surname: Borremans fullname: Borremans, Catherine organization: Ifremer,Plouzané,France,29280 – sequence: 6 givenname: Daniela surname: Zeppilli fullname: Zeppilli, Daniela organization: Ifremer,Plouzané,France,29280 |
BookMark | eNo1kE1PAjEURavRRED-gYsmrgf7-jXtEhCUBGICLNyRTudVa6AlM4OJ_16Murq55yR3cfvkKuWEhNwDGwEw-zCJebMar7daSxAjzrj64VKz0l6QPmitZGkAXi9JjxsBhRSK35Bh234wxgQH0KbskfUGD7HYnI7YfMYWa_qIeKRLdE2K6Y2uco37lobc0PGpywfXRU8XNaYuhujPLSeaA52cwfvZzN0puVtyHdy-xeFfDsh2PttOn4vly9NiOl4W0Yqu0KUMrtS24h5AuYp5VdVBe-ZqCcF4q4ziWvLgDK8tE64KwVYiSAEueANiQO5-ZyMi7o5NPLjma_d_gfgGPndUvQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BioSMART66413.2025.11046079 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 166547811X 9781665478113 |
EISSN | 2831-4352 |
EndPage | 4 |
ExternalDocumentID | 11046079 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-674fa769b2c115ab0c5bdf6c0ad41f8c95852642fa82d903abff9b3f431afc813 |
IEDL.DBID | RIE |
IngestDate | Thu Jul 10 06:35:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-674fa769b2c115ab0c5bdf6c0ad41f8c95852642fa82d903abff9b3f431afc813 |
PageCount | 4 |
ParticipantIDs | ieee_primary_11046079 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-14 |
PublicationDateYYYYMMDD | 2025-05-14 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Bio-engineering for Smart Technologies (Online) |
PublicationTitleAbbrev | BIOSMART |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211687 |
Score | 1.9104848 |
Snippet | This paper explores the automatic classification of benthic fauna, specifically copepoda, which play a crucial role in aquatic ecosystems. Given the challenge... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Biological system modeling classification copepoda Deep learning Environmental monitoring Fauna semi-supervised learning Semisupervised learning Solids Supervised learning Training |
Title | Semi-Supervised Deep Learning Models for Automatic Identification of Benthic Fauna |
URI | https://ieeexplore.ieee.org/document/11046079 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA9uD-KTihO_Cehru36kafro1DGEDXET9jaS9KJDbYtrX_zrvbTdREHwraQQklyS-91dfneEXAkj0V7TxgGQxmHSKDxSKTgIvRl4iglZ08fGEz56YvfzaN6S1WsuDADUj8_AtZ91LD_NdWVdZX3fBiS9OOmQDu6zhqy1caiEaMpwEW-TyzaPZn-wzKdjhIWc402NpmAQueseftRSqVXJcJdM1oNoXpC8ulWpXP35Kz_jv0e5R3rfrD36sNFH-2QLsgPyOIX3pTOtCnsnrCCltwAFbbOqPlNbCu1tRRG50uuqzOv8rbQh75rWm0dzQwfY8IJ_hrLKZI_Mhnezm5HT1lFwlklYOjxmRsY8QZEg_JPK05FKDdeeTJlvhE7QYkBYFBgpgjTxQqmMSVRoEFpIo4UfHpJulmdwRCh4LMROdMAizbivE-Fpg1PVgvsqleEx6dn1WBRNpozFeilO_mg_JTtWLDYa77Mz0i0_KjhHJV-qi1q4X9_3p8k |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86QX1SceK3AX1t1480TR-dOqZuQ9yEvY0kvehQ2-HaF_96rx-bKAi-lRRCmqO5393l9ztCLoSRGK9pYwFIYzFpFP5SMVgIvRk4iglZ0sf6A959YnfjYFyT1UsuDACUl8_ALh7LWn6c6rxIlbXcoiDphNEqWUPHz4KKrrVMqfgYzHARrpPzWkmz1Z6mwz4CQ87xrMZg0AvsxRw_uqmUzqSzRQaLZVR3SF7tPFO2_vyl0PjvdW6T5jdvjz4sPdIOWYFklzwO4X1qDfNZcSrMIabXADNa66o-06IZ2tucInall3mWlgqutKLvmjqfR1ND2zjwgm86Mk9kk4w6N6OrrlV3UrCmkZ9ZPGRGhjxCoyAAlMrRgYoN146MmWuEjjBmQGDkGSm8OHJ8qYyJlG8QXEijhevvkUaSJrBPKDjMx0m0xwLNuKsj4WiDn6oFd1Us_QPSLPZjMqu0MiaLrTj8Y_yMbHRH_d6kdzu4PyKbhYmK2rzLjkkj-8jhBF1-pk5LQ38B2lCrFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Bio-engineering+for+Smart+Technologies+%28Online%29&rft.atitle=Semi-Supervised+Deep+Learning+Models+for+Automatic+Identification+of+Benthic+Fauna&rft.au=Pouresmaeil%2C+Mahdieh&rft.au=Benzinou%2C+Abdesslam&rft.au=Nasreddine%2C+Kamal&rft.au=Foulon%2C+Valentin&rft.date=2025-05-14&rft.pub=IEEE&rft.eissn=2831-4352&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FBioSMART66413.2025.11046079&rft.externalDocID=11046079 |