Application and Optimization of Deep Learning-Based Modulation Format Recognition in Long-Distance Fiber Optic Communication

With the rapid development of information technology, ultra-wideband signals need to quickly switch modulation formats to ensure high-quality communication when wireless channels are subject to interference. This paper proposes a neural network-based modulation format recognition algorithm, which ut...

Full description

Saved in:
Bibliographic Details
Published in2025 IEEE 5th International Conference on Electronic Technology, Communication and Information (ICETCI) pp. 1312 - 1316
Main Authors Sun, Chaoyue, Gao, Han, Gao, Ze
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of information technology, ultra-wideband signals need to quickly switch modulation formats to ensure high-quality communication when wireless channels are subject to interference. This paper proposes a neural network-based modulation format recognition algorithm, which utilizes the power spectral density in the frequency domain as input and classifies modulated signals through a fully connected neural network. Simulation results demonstrate that the algorithm can accurately identify five modulation formats-BPSK, QPSK, 8PSK, 8QAM, and 16QAM-after 10 km of fiber transmission, achieving a classification accuracy of 100% and a bit error rate below 3.8e-3. Compared to the random forest classifier, the fully connected neural network exhibits superior performance in terms of accuracy. This research provides an efficient and reliable solution for modulation format recognition in optical communication systems. In the future, the network structure can be further optimized, and time-domain and frequency-domain features can be fused to enhance performance.
AbstractList With the rapid development of information technology, ultra-wideband signals need to quickly switch modulation formats to ensure high-quality communication when wireless channels are subject to interference. This paper proposes a neural network-based modulation format recognition algorithm, which utilizes the power spectral density in the frequency domain as input and classifies modulated signals through a fully connected neural network. Simulation results demonstrate that the algorithm can accurately identify five modulation formats-BPSK, QPSK, 8PSK, 8QAM, and 16QAM-after 10 km of fiber transmission, achieving a classification accuracy of 100% and a bit error rate below 3.8e-3. Compared to the random forest classifier, the fully connected neural network exhibits superior performance in terms of accuracy. This research provides an efficient and reliable solution for modulation format recognition in optical communication systems. In the future, the network structure can be further optimized, and time-domain and frequency-domain features can be fused to enhance performance.
Author Sun, Chaoyue
Gao, Ze
Gao, Han
Author_xml – sequence: 1
  givenname: Chaoyue
  surname: Sun
  fullname: Sun, Chaoyue
  organization: Dalian Polytechnic University,Dalian,China
– sequence: 2
  givenname: Han
  surname: Gao
  fullname: Gao, Han
  email: 15633515290@163.com
  organization: Dalian Polytechnic University,Dalian,China
– sequence: 3
  givenname: Ze
  surname: Gao
  fullname: Gao, Ze
  organization: Dalian Polytechnic University,Dalian,China
BookMark eNo1kNFKwzAYhSPohc69gRfxATqb5m_SXM7OzkJlILsfSfp3BNqktN2F4sM713l14ONwzuE8kFsfPBLyzOIVY7F6KfO3fV4KyABWSZykfzSDWMobslRSZZyzlHOZwD35Wfd966yeXPBU-5ru-sl17nsGoaEbxJ5WqAfv_DF61SPW9CPUp3Z2FGHo9EQ_0YajdxfkPK3C2btx46S9RVo4g8Ml2NI8dN3JXwsfyV2j2xGXV12QfXFe_h5Vu22Zr6vIKT5FIoFGNQmzQvEMGGcGY6MyBAXCCCNTrHljBNSgIUtBcbCmsdrUTCpmYuQL8jTHOkQ89IPr9PB1-P-E_wJKQF5-
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICETCI64844.2025.11084077
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331533724
EndPage 1316
ExternalDocumentID 11084077
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i93t-624f9f21c69384131be0b98e4946b6b75ed3fb64d4a4854934cbfcabd1791b0e3
IEDL.DBID RIE
IngestDate Wed Jul 30 06:15:18 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-624f9f21c69384131be0b98e4946b6b75ed3fb64d4a4854934cbfcabd1791b0e3
PageCount 5
ParticipantIDs ieee_primary_11084077
PublicationCentury 2000
PublicationDate 2025-May-23
PublicationDateYYYYMMDD 2025-05-23
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-23
  day: 23
PublicationDecade 2020
PublicationTitle 2025 IEEE 5th International Conference on Electronic Technology, Communication and Information (ICETCI)
PublicationTitleAbbrev ICETCI
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9121403
Snippet With the rapid development of information technology, ultra-wideband signals need to quickly switch modulation formats to ensure high-quality communication...
SourceID ieee
SourceType Publisher
StartPage 1312
SubjectTerms Accuracy
Frequency-domain analysis
Fully Connected Neural Network
Modulation
Modulation Format Recognition
Neural networks
Optical Communication
Optical fiber networks
Optical fibers
Random Forest
Random forests
Signal processing algorithms
Simulation
Time-domain analysis
Title Application and Optimization of Deep Learning-Based Modulation Format Recognition in Long-Distance Fiber Optic Communication
URI https://ieeexplore.ieee.org/document/11084077
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfRPCabk1f0_Som8WJmyITdhv5VRliO6S7iH-8SdY6JgjeQghNeIF-7-W973sIXSUQS-sHSEKZiInzyYngAgg1mqdUJ9DTLlAcjdndC9xP42lNVvdcGGOMLz4zgRv6XL4u1dI9lXVdyboNQJIWatnIbUXW2kaXtW5md9i_nfSHDDi4xxIaB836jc4pHjiyXTRutlzVi7wFy0oG6vOXGuO_z7SHOmuOHn76QZ99tGWKA_R1vc5HY1Fo_Gj_CO811RKXOR4Ys8C1puorubEQpvGo1HUPL5x5DxY_N1VFdmpe4IfSrh04R9NtmrkaE_9hhTfoJR00yaxp7kjdX4HM06gijEKe5jRULI24xbJQmp5MuYEUmGQyiY2OcslAgwBuw8gIlMyVkNopmsqeiQ5RuygLc4Qwp4rHSkqnfQORhTtIRKhpLkXo4lN-jDrOcrPFSkFj1hjt5I_5U7TjLtBl6Wl0htrVx9KcW_Cv5IW_9G-x6LDR
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1dS8MwFL3MCeqTihO_jaCP7dY0bdMHH3SzrO5DkQl7K02TyhDboR2i-FP8K_43k67dmOCj4FsJJWl6Q-65ybnnApw6xGISBzAN26GlKUyuhTQkGhacupg7pMFVoNjr2-17cj20hhX4nOXCCCFy8pnQ1WN-l8_TaKKOyuqKsi4DEKfgUHbE26uM0F7O_ZY05xnG3tWg2daKIgLayDUzzcYkdmNsRLZrUrlhG0w0mEsFcYnNbOZYgpsxswknIaEyVjJJxOIoZFzJdrKGMGW3S7AscYaFp9lhK3BSCHXW_aYc0LcJJep0Blt6-YELpVpyT-Wtw1c5xylB5VGfZEyP3n_IP_7Xn7ABtXkOIrqdeddNqIhkCz4u5vftKEw4upE73lORSorSGLWEGKNCM_ZBu5QumqNeyosaZcjLETq6K1lTsmmUoG4q320pIK0G9RSHJu84QgvpMzUY_MWst6GapInYAURxRK2IMaXtQ0zpzokTGhzHLDRU_E13oaYMFYynCiFBaaO9X9qPYbU96HWDrt_v7MOaWjuKkYDNA6hmzxNxKIFOxo7y9YYg-GPTfgMFIw2r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+5th+International+Conference+on+Electronic+Technology%2C+Communication+and+Information+%28ICETCI%29&rft.atitle=Application+and+Optimization+of+Deep+Learning-Based+Modulation+Format+Recognition+in+Long-Distance+Fiber+Optic+Communication&rft.au=Sun%2C+Chaoyue&rft.au=Gao%2C+Han&rft.au=Gao%2C+Ze&rft.date=2025-05-23&rft.pub=IEEE&rft.spage=1312&rft.epage=1316&rft_id=info:doi/10.1109%2FICETCI64844.2025.11084077&rft.externalDocID=11084077