Application and Optimization of Deep Learning-Based Modulation Format Recognition in Long-Distance Fiber Optic Communication
With the rapid development of information technology, ultra-wideband signals need to quickly switch modulation formats to ensure high-quality communication when wireless channels are subject to interference. This paper proposes a neural network-based modulation format recognition algorithm, which ut...
Saved in:
Published in | 2025 IEEE 5th International Conference on Electronic Technology, Communication and Information (ICETCI) pp. 1312 - 1316 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
23.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of information technology, ultra-wideband signals need to quickly switch modulation formats to ensure high-quality communication when wireless channels are subject to interference. This paper proposes a neural network-based modulation format recognition algorithm, which utilizes the power spectral density in the frequency domain as input and classifies modulated signals through a fully connected neural network. Simulation results demonstrate that the algorithm can accurately identify five modulation formats-BPSK, QPSK, 8PSK, 8QAM, and 16QAM-after 10 km of fiber transmission, achieving a classification accuracy of 100% and a bit error rate below 3.8e-3. Compared to the random forest classifier, the fully connected neural network exhibits superior performance in terms of accuracy. This research provides an efficient and reliable solution for modulation format recognition in optical communication systems. In the future, the network structure can be further optimized, and time-domain and frequency-domain features can be fused to enhance performance. |
---|---|
AbstractList | With the rapid development of information technology, ultra-wideband signals need to quickly switch modulation formats to ensure high-quality communication when wireless channels are subject to interference. This paper proposes a neural network-based modulation format recognition algorithm, which utilizes the power spectral density in the frequency domain as input and classifies modulated signals through a fully connected neural network. Simulation results demonstrate that the algorithm can accurately identify five modulation formats-BPSK, QPSK, 8PSK, 8QAM, and 16QAM-after 10 km of fiber transmission, achieving a classification accuracy of 100% and a bit error rate below 3.8e-3. Compared to the random forest classifier, the fully connected neural network exhibits superior performance in terms of accuracy. This research provides an efficient and reliable solution for modulation format recognition in optical communication systems. In the future, the network structure can be further optimized, and time-domain and frequency-domain features can be fused to enhance performance. |
Author | Sun, Chaoyue Gao, Ze Gao, Han |
Author_xml | – sequence: 1 givenname: Chaoyue surname: Sun fullname: Sun, Chaoyue organization: Dalian Polytechnic University,Dalian,China – sequence: 2 givenname: Han surname: Gao fullname: Gao, Han email: 15633515290@163.com organization: Dalian Polytechnic University,Dalian,China – sequence: 3 givenname: Ze surname: Gao fullname: Gao, Ze organization: Dalian Polytechnic University,Dalian,China |
BookMark | eNo1kNFKwzAYhSPohc69gRfxATqb5m_SXM7OzkJlILsfSfp3BNqktN2F4sM713l14ONwzuE8kFsfPBLyzOIVY7F6KfO3fV4KyABWSZykfzSDWMobslRSZZyzlHOZwD35Wfd966yeXPBU-5ru-sl17nsGoaEbxJ5WqAfv_DF61SPW9CPUp3Z2FGHo9EQ_0YajdxfkPK3C2btx46S9RVo4g8Ml2NI8dN3JXwsfyV2j2xGXV12QfXFe_h5Vu22Zr6vIKT5FIoFGNQmzQvEMGGcGY6MyBAXCCCNTrHljBNSgIUtBcbCmsdrUTCpmYuQL8jTHOkQ89IPr9PB1-P-E_wJKQF5- |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICETCI64844.2025.11084077 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798331533724 |
EndPage | 1316 |
ExternalDocumentID | 11084077 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i93t-624f9f21c69384131be0b98e4946b6b75ed3fb64d4a4854934cbfcabd1791b0e3 |
IEDL.DBID | RIE |
IngestDate | Wed Jul 30 06:15:18 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-624f9f21c69384131be0b98e4946b6b75ed3fb64d4a4854934cbfcabd1791b0e3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_11084077 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-23 |
PublicationDateYYYYMMDD | 2025-05-23 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-23 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | 2025 IEEE 5th International Conference on Electronic Technology, Communication and Information (ICETCI) |
PublicationTitleAbbrev | ICETCI |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9121403 |
Snippet | With the rapid development of information technology, ultra-wideband signals need to quickly switch modulation formats to ensure high-quality communication... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1312 |
SubjectTerms | Accuracy Frequency-domain analysis Fully Connected Neural Network Modulation Modulation Format Recognition Neural networks Optical Communication Optical fiber networks Optical fibers Random Forest Random forests Signal processing algorithms Simulation Time-domain analysis |
Title | Application and Optimization of Deep Learning-Based Modulation Format Recognition in Long-Distance Fiber Optic Communication |
URI | https://ieeexplore.ieee.org/document/11084077 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfRPCabk1f0_Som8WJmyITdhv5VRliO6S7iH-8SdY6JgjeQghNeIF-7-W973sIXSUQS-sHSEKZiInzyYngAgg1mqdUJ9DTLlAcjdndC9xP42lNVvdcGGOMLz4zgRv6XL4u1dI9lXVdyboNQJIWatnIbUXW2kaXtW5md9i_nfSHDDi4xxIaB836jc4pHjiyXTRutlzVi7wFy0oG6vOXGuO_z7SHOmuOHn76QZ99tGWKA_R1vc5HY1Fo_Gj_CO811RKXOR4Ys8C1puorubEQpvGo1HUPL5x5DxY_N1VFdmpe4IfSrh04R9NtmrkaE_9hhTfoJR00yaxp7kjdX4HM06gijEKe5jRULI24xbJQmp5MuYEUmGQyiY2OcslAgwBuw8gIlMyVkNopmsqeiQ5RuygLc4Qwp4rHSkqnfQORhTtIRKhpLkXo4lN-jDrOcrPFSkFj1hjt5I_5U7TjLtBl6Wl0htrVx9KcW_Cv5IW_9G-x6LDR |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1dS8MwFL3MCeqTihO_jaCP7dY0bdMHH3SzrO5DkQl7K02TyhDboR2i-FP8K_43k67dmOCj4FsJJWl6Q-65ybnnApw6xGISBzAN26GlKUyuhTQkGhacupg7pMFVoNjr2-17cj20hhX4nOXCCCFy8pnQ1WN-l8_TaKKOyuqKsi4DEKfgUHbE26uM0F7O_ZY05xnG3tWg2daKIgLayDUzzcYkdmNsRLZrUrlhG0w0mEsFcYnNbOZYgpsxswknIaEyVjJJxOIoZFzJdrKGMGW3S7AscYaFp9lhK3BSCHXW_aYc0LcJJep0Blt6-YELpVpyT-Wtw1c5xylB5VGfZEyP3n_IP_7Xn7ABtXkOIrqdeddNqIhkCz4u5vftKEw4upE73lORSorSGLWEGKNCM_ZBu5QumqNeyosaZcjLETq6K1lTsmmUoG4q320pIK0G9RSHJu84QgvpMzUY_MWst6GapInYAURxRK2IMaXtQ0zpzokTGhzHLDRU_E13oaYMFYynCiFBaaO9X9qPYbU96HWDrt_v7MOaWjuKkYDNA6hmzxNxKIFOxo7y9YYg-GPTfgMFIw2r |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2025+IEEE+5th+International+Conference+on+Electronic+Technology%2C+Communication+and+Information+%28ICETCI%29&rft.atitle=Application+and+Optimization+of+Deep+Learning-Based+Modulation+Format+Recognition+in+Long-Distance+Fiber+Optic+Communication&rft.au=Sun%2C+Chaoyue&rft.au=Gao%2C+Han&rft.au=Gao%2C+Ze&rft.date=2025-05-23&rft.pub=IEEE&rft.spage=1312&rft.epage=1316&rft_id=info:doi/10.1109%2FICETCI64844.2025.11084077&rft.externalDocID=11084077 |