A Deep Reinforcement Learning Based Collision Avoidance Algorithm for USV in Narrow Channel

The utilization of deep reinforcement learning (DRL) algorithms presents a viable approach to addressing the collision avoidance problem for unmanned surface vehicles (USVs) in complex environments. However, DRL-based algorithms are subject to certain limitations, which including difficulties in con...

Full description

Saved in:
Bibliographic Details
Published inInternational Symposium on Autonomous Systems (Online) pp. 1 - 6
Main Authors Lin, Yuchang, Song, Rui, Qu, Dong
Format Conference Proceeding
LanguageEnglish
Published IEEE 23.05.2025
Subjects
Online AccessGet full text
ISSN2996-3850
DOI10.1109/ICAISISAS64483.2025.11051855

Cover

Loading…
Abstract The utilization of deep reinforcement learning (DRL) algorithms presents a viable approach to addressing the collision avoidance problem for unmanned surface vehicles (USVs) in complex environments. However, DRL-based algorithms are subject to certain limitations, which including difficulties in concurrently managing obstacle avoidance and channel edge tasks due to insufficient exploration of environmental information, thus reduced the availability of generated path. This study proposes a Soft Actor-Critic (SAC) based dynamic obstacle avoidance algorithm that optimizes the path-planning strategy of a USVs model using the DRL algorithm, thereby achieving efficient two-dimensional position control. The proposed approach integrates the basic SAC algorithm with the artificial potential field method, thus facilitates the generation of a faster and smoother obstacle avoidance path, which mitigating the limitations of traditional DRL-based algorithms. Simulation results demonstrate that the proposed algorithm effectively avoids obstacles in narrow channel environments, thereby enhancing the autonomous navigation capability and safety of the USVs model.
AbstractList The utilization of deep reinforcement learning (DRL) algorithms presents a viable approach to addressing the collision avoidance problem for unmanned surface vehicles (USVs) in complex environments. However, DRL-based algorithms are subject to certain limitations, which including difficulties in concurrently managing obstacle avoidance and channel edge tasks due to insufficient exploration of environmental information, thus reduced the availability of generated path. This study proposes a Soft Actor-Critic (SAC) based dynamic obstacle avoidance algorithm that optimizes the path-planning strategy of a USVs model using the DRL algorithm, thereby achieving efficient two-dimensional position control. The proposed approach integrates the basic SAC algorithm with the artificial potential field method, thus facilitates the generation of a faster and smoother obstacle avoidance path, which mitigating the limitations of traditional DRL-based algorithms. Simulation results demonstrate that the proposed algorithm effectively avoids obstacles in narrow channel environments, thereby enhancing the autonomous navigation capability and safety of the USVs model.
Author Qu, Dong
Lin, Yuchang
Song, Rui
Author_xml – sequence: 1
  givenname: Yuchang
  surname: Lin
  fullname: Lin, Yuchang
  email: lyc22724998@shu.edu.cn
  organization: Shanghai University,School of Future Technology,Shanghai,China
– sequence: 2
  givenname: Rui
  surname: Song
  fullname: Song, Rui
  email: song_rui@shu.edu.cn
  organization: Shanghai University,School of Future Technology,Shanghai,China
– sequence: 3
  givenname: Dong
  surname: Qu
  fullname: Qu, Dong
  email: dongqu@shu.edu.cn
  organization: Shanghai University,School of Future Technology,Shanghai,China
BookMark eNo1kE1LAzEYhKMoWGv_gYccvG59s_loclzXqoWi4FYvHkp2900b2SYluyj-eyvqaRiGZ2DmnJyEGJCQKwZTxsBcL8piUS2qolJCaD7NIZc_gWRayiMyMTOjOWdSiBmoYzLKjVEZ1xLOyKTv3wGAM20M5CPyVtBbxD19Rh9cTA3uMAx0iTYFHzb0xvbY0jJ2ne99DLT4iL61oUFadJuY_LDd0QNGX6pX6gN9tCnFT1pubQjYXZBTZ7seJ386Jqu7-ap8yJZP94cFy8wbPmSKCclVLbVyzoJu0IHltZSmbW3jag7O2rwRTGmj4GCYVdygQGCmlq00fEwuf2s9Iq73ye9s-lr_38G_AfP8V8M
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAISISAS64483.2025.11051855
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798331544706
EISSN 2996-3850
EndPage 6
ExternalDocumentID 11051855
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-614536b586ffa08cef0a3b559ddacfb30faa2c41689600fa1a639e4e019b5d593
IEDL.DBID RIE
IngestDate Thu Jul 10 06:34:09 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-614536b586ffa08cef0a3b559ddacfb30faa2c41689600fa1a639e4e019b5d593
PageCount 6
ParticipantIDs ieee_primary_11051855
PublicationCentury 2000
PublicationDate 2025-May-23
PublicationDateYYYYMMDD 2025-05-23
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-23
  day: 23
PublicationDecade 2020
PublicationTitle International Symposium on Autonomous Systems (Online)
PublicationTitleAbbrev ICAIS & ISAS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189902
Score 1.9119728
Snippet The utilization of deep reinforcement learning (DRL) algorithms presents a viable approach to addressing the collision avoidance problem for unmanned surface...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Autonomous vehicles
Collision avoidance
Deep reinforcement learning
Heuristic algorithms
Narrow environment
Navigation
Position control
Safety
Simulation
Soft-Actor Critics
Training
Unmanned surface vehicle
Vehicle dynamics
Title A Deep Reinforcement Learning Based Collision Avoidance Algorithm for USV in Narrow Channel
URI https://ieeexplore.ieee.org/document/11051855
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTf5LBru65pZnus07EJDrGbDDyMpHmZxdmO0Xnwr_cl6yYKgre20BKSR7_vveT7HiFNjqRBsRCcSEvtBEq0HYSR1PFM8yJk-EJHRu_8MOz0x8H9hE8qsbrVwgCAPXwGrrm0e_mqSFemVNZCqOKIL7xGahhna7HWtqCCwYl_Vn-XNCsfzdagGw-SQRInJgdhmAv63N184kczFYslvX0y3IxifYTkzV2V0k0_fxk0_nuYB6TxLdujj1tAOiQ7kB-Rl5jeAizoE1iP1NSWA2llqzqjN4hiiprygRWZ0_ijyJSJBBrPZ8UyK1_fKb5Gx8kzzXI6tJ6N1GgScpg3yKh3N-r2naqjgpNFrMQ0MeCsI3nY0Vp4YQraE0xiTqGUSLVknhbCT5GihZjX4E1bIH-BAJAGSq54xI5JPS9yOCEUMA2RnvIEolvQ9kFygTQduRaTEehr_5Q0zMRMF2vPjOlmTs7-eH5O9sz6mH15n12QerlcwSXCfSmv7DJ_AVlnqXE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0UE_WkRoy_7YHrYKwrbseJElBYjIAh8UDa9SsScRAyPPjX-7UMjCYm3rYlW5q22Xvva98rISWOpEGxAJxQS-34SlQdhJHEcc3hRcjwhQ6N37kT15p9_37AB7lZ3XphAMBuPoOyubRr-WqaLEyprIJQxRFf-CbZQuD3-dKutS6p4PTEf6u3TUp5kmalVY9a3VY36hoVwlANery8-siP41QsmjT2SLxqx3ITyVt5kcly8vkrovHfDd0nxW_jHn1cQ9IB2YD0kLxE9BZgRp_ApqQmtiBI82DVEb1BHFPUFBCszZxGH9OxMnOBRpPRdD7OXt8pvkb73Wc6TmlsUxupcSWkMCmSXuOuV286-ZkKzjhkGQpFn7Oa5EFNa-EGCWhXMImqQimRaMlcLYSXIEkLUNngTVUggwEfkAhKrnjIjkghnaZwTCigEJGucgXim1_1QHKBRB3ZFpMh6GvvhBRNxwxny9SM4apPTv94fkV2mr1Oe9huxQ9nZNeMlVml99g5KWTzBVwg-Gfy0g75F2okrL4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Autonomous+Systems+%28Online%29&rft.atitle=A+Deep+Reinforcement+Learning+Based+Collision+Avoidance+Algorithm+for+USV+in+Narrow+Channel&rft.au=Lin%2C+Yuchang&rft.au=Song%2C+Rui&rft.au=Qu%2C+Dong&rft.date=2025-05-23&rft.pub=IEEE&rft.eissn=2996-3850&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICAISISAS64483.2025.11051855&rft.externalDocID=11051855