Applying Deep Learning to MRI Image Analysis for Brain Tumor Classification
Automated and accurate brain tumor classification from MRI scans is a promising application of deep learning. This paper presents a YOLOv11-based deep learning model for detecting and classifying three tumor types: glioma, meningioma, and pituitary. Performance evaluation demonstrates the model'...
Saved in:
Published in | International Conference on Bio-engineering for Smart Technologies (Online) pp. 1 - 5 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2831-4352 |
DOI | 10.1109/BioSMART66413.2025.11046083 |
Cover
Loading…
Abstract | Automated and accurate brain tumor classification from MRI scans is a promising application of deep learning. This paper presents a YOLOv11-based deep learning model for detecting and classifying three tumor types: glioma, meningioma, and pituitary. Performance evaluation demonstrates the model's strong capability in tumor detection and classification, particularly with meningioma and pituitary tumors showing higher precision than glioma. Validation curves indicate steady reduction in loss functions across epochs, signifying effective learning and convergence. The model was trained and validated on a structured dataset, achieving a high accuracy performance of 98.9%. Deep learning-based tumor classification can facilitate early detection, assist radiologists, and improve clinical decision-making process. |
---|---|
AbstractList | Automated and accurate brain tumor classification from MRI scans is a promising application of deep learning. This paper presents a YOLOv11-based deep learning model for detecting and classifying three tumor types: glioma, meningioma, and pituitary. Performance evaluation demonstrates the model's strong capability in tumor detection and classification, particularly with meningioma and pituitary tumors showing higher precision than glioma. Validation curves indicate steady reduction in loss functions across epochs, signifying effective learning and convergence. The model was trained and validated on a structured dataset, achieving a high accuracy performance of 98.9%. Deep learning-based tumor classification can facilitate early detection, assist radiologists, and improve clinical decision-making process. |
Author | Alamiri, Deimah Alfadhli, Rimah Almutairi, Hajar Eleyan, Alaa Almutairi, Nour Alhabshi, Rahimah |
Author_xml | – sequence: 1 givenname: Deimah surname: Alamiri fullname: Alamiri, Deimah organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200 – sequence: 2 givenname: Rimah surname: Alfadhli fullname: Alfadhli, Rimah organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200 – sequence: 3 givenname: Hajar surname: Almutairi fullname: Almutairi, Hajar organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200 – sequence: 4 givenname: Rahimah surname: Alhabshi fullname: Alhabshi, Rahimah organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200 – sequence: 5 givenname: Nour surname: Almutairi fullname: Almutairi, Nour organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200 – sequence: 6 givenname: Alaa surname: Eleyan fullname: Eleyan, Alaa email: alaa.eleyan@aum.edu.kw organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200 |
BookMark | eNo1jztPwzAYRQ0Cibb0HzBYYk7xI36NaShQ0QqpZGCrnORzZZQ4URyG_HuogOnec4cj3Tm6Cl0AhO4pWVFKzMPad-_77FBImVK-YoSJ855KovkFmlMpRao0pR-XaMY0p0nKBbtByxg_CSGcUSq1mqHXrO-byYcTfgTo8Q7sEM40dnh_2OJta0-As2CbKfqIXTfg9WB9wMVX-9Pzxsbona_s6Ltwi66dbSIs_3KBiqdNkb8ku7fnbZ7tEm_4mAjjJDAJsrYgNCnBGHA1cVoxqAypnalsKdNSVUI7BlJpRVVNWApMuFqXfIHufrUeAI794Fs7TMf_7_wbTvBR-w |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/BioSMART66413.2025.11046083 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 166547811X 9781665478113 |
EISSN | 2831-4352 |
EndPage | 5 |
ExternalDocumentID | 11046083 |
Genre | orig-research |
GroupedDBID | 6IE 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i93t-59f6e26e6dae580be99efd0f872ec90df9cab64b7c58f2e678717d024e25fd8b3 |
IEDL.DBID | RIE |
IngestDate | Thu Jul 10 06:35:40 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i93t-59f6e26e6dae580be99efd0f872ec90df9cab64b7c58f2e678717d024e25fd8b3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_11046083 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-14 |
PublicationDateYYYYMMDD | 2025-05-14 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | International Conference on Bio-engineering for Smart Technologies (Online) |
PublicationTitleAbbrev | BIOSMART |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003211687 |
Score | 1.9113322 |
Snippet | Automated and accurate brain tumor classification from MRI scans is a promising application of deep learning. This paper presents a YOLOv11-based deep learning... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Artificial Intelligence Brain modeling Brain tumor Detection Brain tumors Convergence Convolutional Neural Networks Decision making Deep learning Explainable AI Magnetic resonance imaging MRI Classification YOLO |
Title | Applying Deep Learning to MRI Image Analysis for Brain Tumor Classification |
URI | https://ieeexplore.ieee.org/document/11046083 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfBPTarmvTNLlOHZuyITpht5E078mQrUPai3-9SdZOFARvoYcS8iDf9-W97z1CbhA1KohlYAznTqCkgUJIAlCIzrnImHIG5_GED1_Zwyyd1WZ174UBAF98BqFb-ly-KfLKPZV1ey4haTlDi7SsctuYtbYPKomVMlxku-S67qPZ7S-Kl7GlhZzbm9pKwTgNmz_8mKXioWSwTybNJjYVJO9hVeow__zVn_HfuzwgnW_XHn3a4tEh2YHVEXl0NNNZmegdwJrW7VTfaFnQ8fOIjpb2PqFNZxJqGSztu6ERdFot7dqPzHTFRD5-HTId3E9vh0E9QCFYyKQMUokcYg7cKEhFpEFKQBOhyGLIZWRQ5kpzprM8FRiDhS2r7YwFbYhTNEInx6S9KlZwQqhRPZMoUCyzBEpHRiitWJ4ozBhKEcEp6biDmK83LTLmzRmc_fH9nOy5eLg0fI9dkHb5UcGlRfdSX_mofgFbeqXE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3oBPVJxYnfBvS1XdemafM6P9jcOkQr7G0kzY0M2TqkffHXm3TtREHwLfShhFzIOTf3nnMBbrSWWqDPHaUYswlK6AiNgYNCa6tcpFRYgXMyZv1X-jgJJ7VYvdLCIGLVfIauXVa1fJVnpX0q63RtQdJwhk3YMsBP-UqutX5SCUwyw-JoG65rJ81Ob5a_JIYYMmbuapMM-qHb_OPHNJUKTB72YNxsY9VD8u6WhXSzz18Ojf_e5z60v3V75GmNSAewgYtDGFqiacVM5A5xSWpD1TdS5CR5HpDB3NwopPEmIYbDkp4dG0HScm7W1dBM205URbAN6cN9ett36hEKzowHhRNyzdBnyJTAMPYkco5aeTqOfMy4pzTPhGRURlkYax8NcJnsThnYRj_UKpbBEbQW-QKPgSjRVYFAQSNDoaSnYiEFzQKhI6p57OEJtO1BTJcrk4xpcwanf3y_gp1-moymo8F4eAa7Nja2KN-l59AqPkq8MFhfyMsqwl9AS6kU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Bio-engineering+for+Smart+Technologies+%28Online%29&rft.atitle=Applying+Deep+Learning+to+MRI+Image+Analysis+for+Brain+Tumor+Classification&rft.au=Alamiri%2C+Deimah&rft.au=Alfadhli%2C+Rimah&rft.au=Almutairi%2C+Hajar&rft.au=Alhabshi%2C+Rahimah&rft.date=2025-05-14&rft.pub=IEEE&rft.eissn=2831-4352&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBioSMART66413.2025.11046083&rft.externalDocID=11046083 |