Applying Deep Learning to MRI Image Analysis for Brain Tumor Classification

Automated and accurate brain tumor classification from MRI scans is a promising application of deep learning. This paper presents a YOLOv11-based deep learning model for detecting and classifying three tumor types: glioma, meningioma, and pituitary. Performance evaluation demonstrates the model'...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Bio-engineering for Smart Technologies (Online) pp. 1 - 5
Main Authors Alamiri, Deimah, Alfadhli, Rimah, Almutairi, Hajar, Alhabshi, Rahimah, Almutairi, Nour, Eleyan, Alaa
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.05.2025
Subjects
Online AccessGet full text
ISSN2831-4352
DOI10.1109/BioSMART66413.2025.11046083

Cover

Loading…
Abstract Automated and accurate brain tumor classification from MRI scans is a promising application of deep learning. This paper presents a YOLOv11-based deep learning model for detecting and classifying three tumor types: glioma, meningioma, and pituitary. Performance evaluation demonstrates the model's strong capability in tumor detection and classification, particularly with meningioma and pituitary tumors showing higher precision than glioma. Validation curves indicate steady reduction in loss functions across epochs, signifying effective learning and convergence. The model was trained and validated on a structured dataset, achieving a high accuracy performance of 98.9%. Deep learning-based tumor classification can facilitate early detection, assist radiologists, and improve clinical decision-making process.
AbstractList Automated and accurate brain tumor classification from MRI scans is a promising application of deep learning. This paper presents a YOLOv11-based deep learning model for detecting and classifying three tumor types: glioma, meningioma, and pituitary. Performance evaluation demonstrates the model's strong capability in tumor detection and classification, particularly with meningioma and pituitary tumors showing higher precision than glioma. Validation curves indicate steady reduction in loss functions across epochs, signifying effective learning and convergence. The model was trained and validated on a structured dataset, achieving a high accuracy performance of 98.9%. Deep learning-based tumor classification can facilitate early detection, assist radiologists, and improve clinical decision-making process.
Author Alamiri, Deimah
Alfadhli, Rimah
Almutairi, Hajar
Eleyan, Alaa
Almutairi, Nour
Alhabshi, Rahimah
Author_xml – sequence: 1
  givenname: Deimah
  surname: Alamiri
  fullname: Alamiri, Deimah
  organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200
– sequence: 2
  givenname: Rimah
  surname: Alfadhli
  fullname: Alfadhli, Rimah
  organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200
– sequence: 3
  givenname: Hajar
  surname: Almutairi
  fullname: Almutairi, Hajar
  organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200
– sequence: 4
  givenname: Rahimah
  surname: Alhabshi
  fullname: Alhabshi, Rahimah
  organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200
– sequence: 5
  givenname: Nour
  surname: Almutairi
  fullname: Almutairi, Nour
  organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200
– sequence: 6
  givenname: Alaa
  surname: Eleyan
  fullname: Eleyan, Alaa
  email: alaa.eleyan@aum.edu.kw
  organization: College of Engineering and Technology, American University of the Middle East,Egaila,Kuwait,54200
BookMark eNo1jztPwzAYRQ0Cibb0HzBYYk7xI36NaShQ0QqpZGCrnORzZZQ4URyG_HuogOnec4cj3Tm6Cl0AhO4pWVFKzMPad-_77FBImVK-YoSJ855KovkFmlMpRao0pR-XaMY0p0nKBbtByxg_CSGcUSq1mqHXrO-byYcTfgTo8Q7sEM40dnh_2OJta0-As2CbKfqIXTfg9WB9wMVX-9Pzxsbona_s6Ltwi66dbSIs_3KBiqdNkb8ku7fnbZ7tEm_4mAjjJDAJsrYgNCnBGHA1cVoxqAypnalsKdNSVUI7BlJpRVVNWApMuFqXfIHufrUeAI794Fs7TMf_7_wbTvBR-w
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BioSMART66413.2025.11046083
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 166547811X
9781665478113
EISSN 2831-4352
EndPage 5
ExternalDocumentID 11046083
Genre orig-research
GroupedDBID 6IE
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i93t-59f6e26e6dae580be99efd0f872ec90df9cab64b7c58f2e678717d024e25fd8b3
IEDL.DBID RIE
IngestDate Thu Jul 10 06:35:40 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i93t-59f6e26e6dae580be99efd0f872ec90df9cab64b7c58f2e678717d024e25fd8b3
PageCount 5
ParticipantIDs ieee_primary_11046083
PublicationCentury 2000
PublicationDate 2025-May-14
PublicationDateYYYYMMDD 2025-05-14
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-14
  day: 14
PublicationDecade 2020
PublicationTitle International Conference on Bio-engineering for Smart Technologies (Online)
PublicationTitleAbbrev BIOSMART
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003211687
Score 1.9113322
Snippet Automated and accurate brain tumor classification from MRI scans is a promising application of deep learning. This paper presents a YOLOv11-based deep learning...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Accuracy
Artificial Intelligence
Brain modeling
Brain tumor Detection
Brain tumors
Convergence
Convolutional Neural Networks
Decision making
Deep learning
Explainable AI
Magnetic resonance imaging
MRI Classification
YOLO
Title Applying Deep Learning to MRI Image Analysis for Brain Tumor Classification
URI https://ieeexplore.ieee.org/document/11046083
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfBPTarmvTNLlOHZuyITpht5E078mQrUPai3-9SdZOFARvoYcS8iDf9-W97z1CbhA1KohlYAznTqCkgUJIAlCIzrnImHIG5_GED1_Zwyyd1WZ174UBAF98BqFb-ly-KfLKPZV1ey4haTlDi7SsctuYtbYPKomVMlxku-S67qPZ7S-Kl7GlhZzbm9pKwTgNmz_8mKXioWSwTybNJjYVJO9hVeow__zVn_HfuzwgnW_XHn3a4tEh2YHVEXl0NNNZmegdwJrW7VTfaFnQ8fOIjpb2PqFNZxJqGSztu6ERdFot7dqPzHTFRD5-HTId3E9vh0E9QCFYyKQMUokcYg7cKEhFpEFKQBOhyGLIZWRQ5kpzprM8FRiDhS2r7YwFbYhTNEInx6S9KlZwQqhRPZMoUCyzBEpHRiitWJ4ozBhKEcEp6biDmK83LTLmzRmc_fH9nOy5eLg0fI9dkHb5UcGlRfdSX_mofgFbeqXE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3oBPVJxYnfBvS1XdemafM6P9jcOkQr7G0kzY0M2TqkffHXm3TtREHwLfShhFzIOTf3nnMBbrSWWqDPHaUYswlK6AiNgYNCa6tcpFRYgXMyZv1X-jgJJ7VYvdLCIGLVfIauXVa1fJVnpX0q63RtQdJwhk3YMsBP-UqutX5SCUwyw-JoG65rJ81Ob5a_JIYYMmbuapMM-qHb_OPHNJUKTB72YNxsY9VD8u6WhXSzz18Ojf_e5z60v3V75GmNSAewgYtDGFqiacVM5A5xSWpD1TdS5CR5HpDB3NwopPEmIYbDkp4dG0HScm7W1dBM205URbAN6cN9ett36hEKzowHhRNyzdBnyJTAMPYkco5aeTqOfMy4pzTPhGRURlkYax8NcJnsThnYRj_UKpbBEbQW-QKPgSjRVYFAQSNDoaSnYiEFzQKhI6p57OEJtO1BTJcrk4xpcwanf3y_gp1-moymo8F4eAa7Nja2KN-l59AqPkq8MFhfyMsqwl9AS6kU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Bio-engineering+for+Smart+Technologies+%28Online%29&rft.atitle=Applying+Deep+Learning+to+MRI+Image+Analysis+for+Brain+Tumor+Classification&rft.au=Alamiri%2C+Deimah&rft.au=Alfadhli%2C+Rimah&rft.au=Almutairi%2C+Hajar&rft.au=Alhabshi%2C+Rahimah&rft.date=2025-05-14&rft.pub=IEEE&rft.eissn=2831-4352&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FBioSMART66413.2025.11046083&rft.externalDocID=11046083